Definition: Let $n=\prod_k p_k^{c_k}$, with $p_k \in \mathbb P$ and $$ A(n)=\sum_{d|n} \mu(d)\Lambda(d)=\sum \log p_k^{1-\delta_{0,c_k}} , $$
with the Möbius function $\mu(n)$, which is:
- $μ(n) = \pm 1$ if $n$ is a square-free positive integer with an even/odd number of prime factors.
- $μ(n) = 0$ if $n$ has a squared prime factor.
And the von Mangoldt function $Λ(n)$, defined as $$ \Lambda(n) = \begin{cases} \log p & \text{if }n=p^k \text{ for some prime } p \text{ and integer } k \ge 1, \\ 0 & \text{otherwise.} \end{cases} $$
Properties of $A(n)$:
$A(\cdot)$ basically takes every number $n$ to a sum of logarithms of prime factors, e.g. $$ A(12)=A(2^23)=\log 2 + \log 3=A(6);\\ A(4)=A(2)=\log 2. $$
The arithmetic function is additive, since $A(nm)=A(n)+A(m)$ only for co-prime $n$ and $m$, e.g. $$ \log 2 + \log 3=A(6)=A(2\cdot 3) = A(2)+A(3)= \log 2 + \log 3 $$
You can apply the Möbius Inversion to it. You'll get: $$ \mu(n)\Lambda(n)=\sum_{d|n} \mu(d) A(n/d), $$ e.g. (where I write only terms with $\mu(d)\neq 0$) $$0=\mu(12)\Lambda(12)=\mu(6)A(2)+\mu(3)A(4)+\mu(2)A(6)+\mu(1)A(12)\\ =\log 2-\log 2-(\log 2+\log 3)+(\log 2+\log 3)=0$$
Was the additive arithmetic function $A(n)$ ever used in any context?