Let $\Omega=\mathbb{R} $ and $\mathcal{S}=\{\{x\}:x \in \Omega \}$
a) $\mathbb{N} \in \sigma(\mathcal{S})$?
b)Prove that $]0,1[ \not \in \sigma(\mathcal{S})$)
With the question a) I haven´t problem being that $\sigma(\mathcal{S})$ is a $\sigma$-algebra then Union of natural numbers $\in$ $\sigma(\mathcal{S})$ then $\mathbb{N} \in \sigma(\mathcal{S})$ ,
but b) I think it makes accounting sets but I do not know how propose