Is this correct?
$a^3 =r^3e^{i3\theta}= 5\sqrt{5}e^{i\arctan(11/2)}$ $$\implies r=\sqrt{5}, 3\theta = \arctan(11/2)+2\pi n,n\in\Bbb Z$$ $$\theta = \frac{\arctan(11/2)+2\pi n}{3}$$ $$\theta = \frac{\arctan(11/2)}{3},\frac{\arctan(11/2)-2\pi}{3}, \frac{\arctan(11/2)-4\pi }{3}$$
So $a=\sqrt{5}e^{i\frac{\arctan(11/2)}{3}}, \sqrt{5}e^{i\frac{\arctan(11/2)-2\pi}{3}},\sqrt{5}e^{i \frac{\arctan(11/2)-4\pi }{3}}$
Is there a simplification I am missing?