I have the following matrix: $$A=\begin{pmatrix} -9 & 7 & 4 \\ -9 & 7 & 5\\ -8 & 6 & 2 \end{pmatrix}$$
And I need to find the characteristic polynomial so I use det(xI-A) which is $$\begin{vmatrix} x+9 & -7 & -4 \\ 9 & x-7 & -5\\ 8 & -6 & x-2 \end{vmatrix}$$
Is there a way to calculate the determinate faster or is way is:
$$(x+9)\cdot\begin{vmatrix} x-7 & -5 \\ -6 & x-2 \\ \end{vmatrix}+7\cdot\begin{vmatrix} 9 & -5 \\ 8 & x-2 \\ \end{vmatrix} -4\begin{vmatrix} 9 & x-7 \\ 8 & -6 \\ \end{vmatrix}=$$
$$=(x+9)[(x-7)(x-2)-30]+7[9x-18+40]-4[54-8x+56]=(x+9)[x^2-9x-16]+7[9x+22]-4[-8x+2]=x^3-2x+2$$