I'm trying to solve the integrals below:
$$\int_{-\infty}^\infty \int_{-\infty}^\infty \frac{x}{\sqrt{x^2+y^2}}\cdot \operatorname{erf}\left(m\cdot\sqrt{x^2+y^2}\right) \cdot \exp(-a\cdot (x-b)^2-a\cdot (y-c)^2)\mathrm dx\mathrm dy$$ where $a,b,c$ and $m$ are constants. Does anybody know how to solve the integral? Thanks!