$$p(p+1) \equiv -q(q+1) \bmod pq$$
Can this be reduced to an easier format?
$$p(p+1) \equiv -q(q+1) \bmod pq$$
Can this be reduced to an easier format?
Note that $$p(p+1) + q(q+1) = p^2 + q^2 + p + q \equiv p^2 + 2 p q + q^2 + p + q \equiv (p+q)(p+q+1) \mod pq$$ so it's equivalent to $$ (p+q)(p+q+1) \equiv 0 \mod pq $$ Note also that $p+q+1 \equiv (p+1)(q+1) \mod pq$, so this is equivalent to $$(p+q)(p+1)(q+1) \equiv 0 \mod pq$$
Mod $pq$, $p(p+1) \equiv -q(q+1) \iff p^2+p = -q^2-q \iff p^2+q^2 +p+q =0 $
$\begin{array}\\ (p+q+1)^2 &\equiv p^2+q^2+1+2pq+2p+2q\\ &\equiv p^2+q^2+1+2p+2q\\ &\equiv (p^2+q^2+p+q)+p+q+1\\ &\equiv p+q+1\\ \end{array} $
Therefore, if $n = p+q+1$, $n^2 \equiv n$ or $n(n-1) \equiv 0 $.
If $p$ and $q$ are distinct primes (or even just relatively prime), then $gcd(n-1, p) = gcd(n-1, q) = 1$, so that $n \equiv 0 $.
But $n < pq $, so that this can not hold.