Proof
$1+2\cos(\theta)+2\cos(2\theta)+2\cos(3\theta)+...+2\cos((n-1)\theta)=\frac{2\sin((n-\frac{1}{2})\theta)}{2\sin(\frac{1}{2}\theta)} $
Proof
$1+2\cos(\theta)+2\cos(2\theta)+2\cos(3\theta)+...+2\cos((n-1)\theta)=\frac{2\sin((n-\frac{1}{2})\theta)}{2\sin(\frac{1}{2}\theta)} $
One of such proofs is: $1+e^{i\theta} + e^{2i\theta}+\cdots + e^{(n-1)i\theta} = \dfrac{e^{ni\theta}-1}{e^{i\theta}-1}$. Then take the real part of both and equate them.