Prove that $\left|(|x|-|y|)\right|\leq|x-y|$
Proof:
$$\begin{align} \left|(|x|-|y|)\right| &\leq|x-y| \\ {\left|\sqrt{x^2}-\sqrt{y^2}\right|}&\leq \sqrt{(x-y)^2} &\text{($\sqrt{a^2}=|a|)$}\\ \sqrt{\left(\sqrt{x^2}-\sqrt{y^2}\right)^2}&\leq \sqrt{(x-y)^2} &\text{($\sqrt{a^2}=|a|)$} \\ \left(\sqrt{x^2}-\sqrt{y^2}\right)^2 &\leq (x-y)^2&\text{$(0\leq a\leq b\implies a^2\leq b^2)$}\\ \left(\sqrt{x^2}\right)^2-2\sqrt{x^2}\sqrt{y^2}+\left(\sqrt{y^2}\right)^2&\leq x^2-2xy+y^2 &\text{(Distribution)} \\ |x|^2-2|x||y|+|y|^2&\leq x^2-2xy+y^2 &\text{($\sqrt{a^2}=|a|)$}\end{align} \\ $$
From here, we can see that $|x|^2+|y|^2=x^2+y^2$, and it suffices to show that the following holds: $$-2|x||y|\leq -2xy.$$
When $x>0,y>0$ or $x<0,y<0$, the product $xy$ is positive, and so $-2|x||y|=-2xy$ holds.
When $x<0,y>0$ or $x>0,y<0$, the product $xy$ is negative, and so $-2xy>0$, and it follows that:
$$-2|x||y|<0<-2xy. $$
$\square$
Is this proof valid? I am unsure if I overlooked anything, also I have some specific questions about the proof (if it is valid up to this point). From the 3rd to the 4th inequality, it feels like I am making a leap in knowing that $a\leq b$ prior to proving what's to be proved by using the result $a^2\leq b^2$. Is this a problem?
What are some alternative ways of showing this inequality?