-1

I would need help with this question:

$$Z = \frac{(1+j2)^2(4-j3)^3 }{ (3+j4)^4 (2-j3)}$$

My starting point for this question is to expand the complex numbers first then continue doing but after expanding I am stuck.

Am I on the right track? Kindly help :D.

zoli
  • 20,452
Ong
  • 71
  • Can you show us the result of your expansion – John_dydx Aug 22 '15 at 10:37
  • Opening the parentheses is not a good idea. Modulus and argument behave nicely when we MULTIPLY. So it is much easier to compute modulus and argument of a product then of a sum. So the general approach would be to FACTOR not to open parantheses. But your expression is already factored. – Alexandre Eremenko Aug 25 '15 at 01:24

3 Answers3

1

HINT:

For modulus use $\left|\dfrac{a^mb^n}{c^pd^q}\right|=\dfrac{|a|^m|b|^n}{|c|^p|d|^q}$ where $m,n,p,q$ are real

For the principal argument($\in(-\pi,\pi]$) (definition),

$$A=2\arctan\dfrac21+3\arctan\dfrac{-3}4-4\arctan\dfrac43-\arctan\dfrac{-3}2$$

using showing $\arctan(\frac{2}{3}) = \frac{1}{2} \arctan(\frac{12}{5})$ and Are $\mathrm{arccot}(x)$ and $\arctan(1/x)$ the same function?

$2\arctan2=\pi+\arctan\dfrac{2\cdot2}{1-2^2}=\pi-\arctan\dfrac43$

$$\implies A=\pi-3\arctan\dfrac34-3\arctan\dfrac43+\arctan\dfrac32$$

$$=\pi-3\left(\text{arccot}\dfrac43+\arctan\dfrac43\right)+\arctan\dfrac32$$

$$=\pi-3\cdot\dfrac\pi2+\dfrac\pi2-\arctan\dfrac23$$

$$\equiv-\arctan\dfrac23\pmod{2\pi}$$

1

Since $-j(3+j4)=4-j3$, it reduces to $$Z=\frac{(1+j2)^2(4-j3)^3}{(3+j4)^4(2-j3)}=\frac{(1+j2)^2}{(2-j3)(3+j4)}\cdot\left(\frac{4-j3}{3+j4}\right)^3=\frac{(1+j2)^2}{(2-j3)(3+j4)}\cdot(-j)^3$$ Expanding numerator and denominator separately gives $$Z=\frac{-4-3j}{18-j}$$ Now multiplying it by $\frac{18+j}{18+j}$ gives $$Z=\frac{-4-3j}{18-j}\cdot\frac{18+j}{18+j}=\frac{-4\times 18+3+(-4-3\times 18)j}{18^2+1}=\frac{-69-58j}{325}$$ I'm sure you can continue from here.

mathlove
  • 139,939
0

Generally, after expanding the above you get something that looks like:

$$ Z =\frac{a+bj}{x+yj}$$

You can simplify this by rationalising the denominator:

$$Z= \frac{a+bj}{x+yj} \times\frac{x-yj}{x-yj} $$

This will now give you a complex number of the form: $p+qj$

Modulus(Z) $ = \sqrt{p^2 + q^2}$

$\arg(Z) = \arctan \left(\frac{q}{p}\right)$

There are some very good tricks in the other answers so you can take advantage of them.

John_dydx
  • 4,198