I'll play around and see what happens.
We want
$\pi=2- \sum_{1}^{∞} \frac{(-1)^m}{m^2-\frac{1}{4}}
$
$\begin{array}\\
S
&=\sum_{m=1}^{∞} \frac{(-1)^m}{m^2-\frac{1}{4}}\\
&=\sum_{m=1}^{∞} \frac{(-1)^m}{m^2}\frac1{1-\frac{1}{4m^2}}\\
&=\sum_{m=1}^{∞} \frac{(-1)^m}{m^2}\sum_{j=0}^{\infty}\frac{1}{(4m^{2})^j}\\
&=4\sum_{m=1}^{\infty}(-1)^m\sum_{j=0}^{\infty}\frac{1}{(4m^{2})^{j+1}}\\
&=4\sum_{m=1}^{\infty}(-1)^m\sum_{j=1}^{\infty}\frac{1}{(4m^{2})^{j}}\\
&=4\sum_{j=1}^{\infty}\sum_{m=1}^{\infty}(-1)^m\frac{1}{(4m^{2})^{j}}\\
&=4\sum_{j=1}^{\infty}\frac1{4^j}\sum_{m=1}^{\infty}(-1)^m\frac{1}{(m^{2})^{j}}\\
&=4\sum_{j=1}^{\infty}\frac1{4^j}\sum_{m=1}^{\infty}(-1)^m\frac{1}{m^{2j}}\\
&=-4\sum_{j=1}^{\infty}\frac1{4^j}\zeta(2j)(1-2^{1-2j})\\
&=-4\sum_{j=1}^{\infty}\frac1{4^j}\zeta(2j)+8\sum_{j=1}^{\infty}\frac1{4^{2j}}\zeta(2j))\\
\end{array}
$
According to
https://en.wikipedia.org/wiki/Riemann_zeta_function,
$\sum_{j=1}^{\infty}\frac{\zeta(2j)-1}{4^j}
=\frac16
$
and
$\sum_{j=1}^{\infty}\frac{\zeta(2j)-1}{16^j}
=\frac{13}{30}-\frac{\pi}{8}
$.
Therefore
$\begin{array}\\
\sum_{j=1}^{\infty}\frac{\zeta(2j)}{4^j}
&=\frac16+\sum_{j=1}^{\infty}\frac{1}{4^j}\\
&=\frac16+\frac{1/4}{1-1/4}\\
&=\frac16+\frac13\\
&=\frac12\\
\end{array}
$
and
$\begin{array}\\
\sum_{j=1}^{\infty}\frac{\zeta(2j)}{16^j}
&=\frac{13}{30}-\frac{\pi}{8}+\sum_{j=1}^{\infty}\frac{1}{16^j}\\
&=\frac{13}{30}-\frac{\pi}{8}+\frac{1/16}{1-1/16}\\
&=\frac{13}{30}-\frac{\pi}{8}+\frac{1}{15}\\
&=\frac12-\frac{\pi}{8}\\
\end{array}
$.
Putting this together,
$\begin{array}\\
S
&=-4\sum_{j=1}^{\infty}\frac1{4^j}\zeta(2j)+8\sum_{j=1}^{\infty}\frac1{4^{2j}}\zeta(2j)\\
&=-4(\frac12)+8(\frac12-\frac{\pi}{8})\\
&=-2+4-\pi\\
&=2-\pi\\
\end{array}
$.
Whew!