2

By considering the fact that $f(\pi/2)=1$, prove the identity

$\pi=2- \sum_{1}^{∞} \frac{(-1)^m}{m^2-\frac{1}{4}} $

This question was is a subsection in a chapter on Fourier series, can I use my understanding of Fourier series to prove the identity, or is there an easier way of making the proof?

EDIT Another part of this question asked to find the Fourier series of the periodic function $f(x)$ defined by $f(x)= |sin(x)|$, this is the function they are probably referring to in the proof.

mnmakrets
  • 251

2 Answers2

12

Fourier series are not really needed to prove the identity: $$\begin{align*}\sum_{m\geq 1}\frac{(-1)^m}{4m^2-1}&=\frac{1}{2}\sum_{m\geq 1}(-1)^m\left(\frac{1}{2m-1}-\frac{1}{2m+1}\right)\\&=\frac{1}{2}\sum_{m\geq 1}(-1)^m\int_{0}^{1}\left(x^{2m-2}-x^{2m}\right)\,dx\\&=\frac{1}{2}\int_{0}^{1}\frac{x^2-1}{x^2+1}\,dx\\&=\frac{1}{2}\left(1-2\arctan 1\right)\\&=\color{red}{\frac{2-\pi}{4}}.\end{align*}$$

Jack D'Aurizio
  • 353,855
  • Very nice. Much simpler than mine. – marty cohen Aug 20 '15 at 22:39
  • 1
    I just posted a solution for a tedious integral and received a comment that a wise young man once said, and I'm paraphrasing here, that there is more than 1 way to skin a series. – Mark Viola Aug 20 '15 at 22:41
  • Can anyone explain how to get from the second line to the third? – Teman Aug 20 '15 at 23:39
  • 1
    @hans__ You mean, how he got rid of the $\sum$? Switch $\sum$ and $\int$, and use the geometric series. – Akiva Weinberger Aug 20 '15 at 23:56
  • @columbus8myhw how is the switch possible? And we have $0\leq x\leq 1$ instead of $0\leq x <1$, no? I am mindful of the gap in my knowledge of analysis. – Teman Aug 20 '15 at 23:58
  • @hans__: a single point does not matter for integration purposes. $x^{2m-2}-x^{2m}$ is a non-negative and bounded function on $(0,1)$ having integral $O\left(\frac{1}{m^2}\right)$, so we are more than allowed to switch the series and the integral (we have absolute convergence). – Jack D'Aurizio Aug 21 '15 at 00:01
  • You could have separated the series, made a substitution, and recombined, rather than messing with integrals, I believe. It would lead you straight to the Gregory-Leibniz formula. – Akiva Weinberger Aug 21 '15 at 00:02
  • @columbus8myhw: I do not think my approach is "messy" but you are right, that is an even shorter way. – Jack D'Aurizio Aug 21 '15 at 00:04
  • "Messing," not "messy." I didn't mean to imply anything. – Akiva Weinberger Aug 21 '15 at 00:06
3

I'll play around and see what happens.

We want $\pi=2- \sum_{1}^{∞} \frac{(-1)^m}{m^2-\frac{1}{4}} $

$\begin{array}\\ S &=\sum_{m=1}^{∞} \frac{(-1)^m}{m^2-\frac{1}{4}}\\ &=\sum_{m=1}^{∞} \frac{(-1)^m}{m^2}\frac1{1-\frac{1}{4m^2}}\\ &=\sum_{m=1}^{∞} \frac{(-1)^m}{m^2}\sum_{j=0}^{\infty}\frac{1}{(4m^{2})^j}\\ &=4\sum_{m=1}^{\infty}(-1)^m\sum_{j=0}^{\infty}\frac{1}{(4m^{2})^{j+1}}\\ &=4\sum_{m=1}^{\infty}(-1)^m\sum_{j=1}^{\infty}\frac{1}{(4m^{2})^{j}}\\ &=4\sum_{j=1}^{\infty}\sum_{m=1}^{\infty}(-1)^m\frac{1}{(4m^{2})^{j}}\\ &=4\sum_{j=1}^{\infty}\frac1{4^j}\sum_{m=1}^{\infty}(-1)^m\frac{1}{(m^{2})^{j}}\\ &=4\sum_{j=1}^{\infty}\frac1{4^j}\sum_{m=1}^{\infty}(-1)^m\frac{1}{m^{2j}}\\ &=-4\sum_{j=1}^{\infty}\frac1{4^j}\zeta(2j)(1-2^{1-2j})\\ &=-4\sum_{j=1}^{\infty}\frac1{4^j}\zeta(2j)+8\sum_{j=1}^{\infty}\frac1{4^{2j}}\zeta(2j))\\ \end{array} $

According to https://en.wikipedia.org/wiki/Riemann_zeta_function, $\sum_{j=1}^{\infty}\frac{\zeta(2j)-1}{4^j} =\frac16 $ and $\sum_{j=1}^{\infty}\frac{\zeta(2j)-1}{16^j} =\frac{13}{30}-\frac{\pi}{8} $. Therefore

$\begin{array}\\ \sum_{j=1}^{\infty}\frac{\zeta(2j)}{4^j} &=\frac16+\sum_{j=1}^{\infty}\frac{1}{4^j}\\ &=\frac16+\frac{1/4}{1-1/4}\\ &=\frac16+\frac13\\ &=\frac12\\ \end{array} $

and

$\begin{array}\\ \sum_{j=1}^{\infty}\frac{\zeta(2j)}{16^j} &=\frac{13}{30}-\frac{\pi}{8}+\sum_{j=1}^{\infty}\frac{1}{16^j}\\ &=\frac{13}{30}-\frac{\pi}{8}+\frac{1/16}{1-1/16}\\ &=\frac{13}{30}-\frac{\pi}{8}+\frac{1}{15}\\ &=\frac12-\frac{\pi}{8}\\ \end{array} $.

Putting this together,

$\begin{array}\\ S &=-4\sum_{j=1}^{\infty}\frac1{4^j}\zeta(2j)+8\sum_{j=1}^{\infty}\frac1{4^{2j}}\zeta(2j)\\ &=-4(\frac12)+8(\frac12-\frac{\pi}{8})\\ &=-2+4-\pi\\ &=2-\pi\\ \end{array} $.

Whew!

marty cohen
  • 107,799