While I was working on this question by @Vladimir Reshetnikov, I've found the following relations between Gaussian hypergeometric function values and the Baxter constant:
$$\begin{align}{_2F_1}\left(\begin{array}c\tfrac13,\tfrac13\\1\end{array}\middle|\,-1\right) &\stackrel{?}{=} \frac{1}{2^{\small2/3}}\,C^2_\text{B4CC},\\ {_2F_1}\left(\begin{array}c\tfrac23,\tfrac23\\1\end{array}\middle|\,-1\right) &\stackrel{?}{=} \frac{1}{2}\,C^2_\text{B4CC},\\ {_2F_1}\left(\begin{array}c\tfrac13,\tfrac13\\1\end{array}\middle|\,\frac19\right) &\stackrel{?}{=} \frac{1}{\sqrt[3]{3}}\,C^2_\text{B4CC},\\ {_2F_1}\left(\begin{array}c\tfrac23,\tfrac23\\1\end{array}\middle|\,\frac19\right) &\stackrel{?}{=} \frac{\sqrt[3]{3}}{2}\,C^2_\text{B4CC},\\ {_2F_1}\left(\begin{array}c\tfrac13,\tfrac13\\1\end{array}\middle|\,9\right) &\stackrel{?}{=} \frac{3-i\sqrt3}{6}\,C^2_\text{B4CC},\\ {_2F_1}\left(\begin{array}c\tfrac23,\tfrac23\\1\end{array}\middle|\,9\right) &\stackrel{?}{=} -\frac{i}{2\sqrt3}\,C^2_\text{B4CC},\\ \end{align}$$
where ${_2F_1}$ is the Gaussian hypergeometric function, and
$$ C^2_\text{B4CC} = \frac{3}{4\pi^2}\Gamma^3\left(\tfrac{1}{3}\right) \approx 1.460998486206318358158873117846059697\dots $$
is Baxter's four-coloring constant.
The first two identity are known, but with the last four relations I've never met before.
How could we prove these identities?
In this paper, there is another connection between a hypergeometric value and Baxter constant.