I was on physics stackexchange and came across an unusual answer where it was stated that the axiom,
$$\forall x ((x \in x) \land (x \notin x))$$
Creates an axiom system where "nothing" exists in it. I kind of misquoted here, here's an exact,
"From that single axiom we can conclude that nothing exists, that the universe of discourse of this axiom system is exactly the empty universe of discourse."
Needless to say, I got into a heated debate on the self-consistency of the axiom. My position is that it can't create a universe or universe of discourse because there are no entities within it. See wikipedia's definition
In English, I interpret the axiom to say,
For all X, X is an element of itself and X is not an element of itself.
This seems self contradicting, akin to Russell's paradox, but the Op insists that it isn't.
I'm open to either take on the issue, but a simple yes/no response will not cut it. A definition review might also help quantify the dialogue.
If it helps, from a semi philosophical-mathematical I consider nothing to be the null set.