The limits I'm trying to solve are:
$$\lim_{n\to \infty}\sin(1)\times\sin(2)\times\sin(3)\times\ldots\times\sin(n)$$ $$\lim_{n\to \infty}n\times\sin(1)\times\sin(2)\times\sin(3)\times\ldots\times\sin(n)$$
For the former limit, my (probably incorrect) solution is that $\sin(1)\times\sin(2)\times\sin(3)\ldots$ are constants, so the limit can be written as
$$\sin(1)\times\sin(2)\times\sin(3)\times\ldots\times\sin(n-1)\cdot \lim_{n\to \infty}\sin(n)$$
and $\lim_{n\to \infty}\sin(n)$ simply does not exist, because $\sin(n)$ does not settle on a single value when ${n\to \infty}$.