In the 14th century ,an Indian mathematician T.V Narayana came up with a sequence now named after him.The sequence satisfies the recurrence $$a_{n}=a_{n-1}+a_{n-3}$$
Starting with $a_{0}=a_{1}=1$, and $a_{2}=2$ hence, $a_n = 1, 1, 2, 3, 4, 6, 9, 13,\dots$
I would like to conjecture a new generating function for narayana's sequence $a_{n}$. Given
$$\psi\Big(q\Big)=\cfrac{1}{1+q-\cfrac{(q^2)}{1+q^3+\cfrac{q^2(1-q)(1-q^3)}{1+q^5-\cfrac{q^3(1+q^2)(1+q^4)}{1+q^7+\cfrac{q^4(1-q^3)(1-q^5)}{1+q^9-\ddots}}}}}$$
How can we show that
$$\psi\Big(q\Big)= \sum_{n=0}^\infty (-1)^{n} a_{n}q^n = 1 -1q +2q^2-3q^3+4q^4-6q^5+\dots$$
is true,such that the functional equation holds
$$\psi\Big(q\Big)=\frac{1}{q}\psi\Big(\frac{1}{q}\Big)$$