Inspired by this question and by using Mathematica the following conjecture seems to be true for all nonzero complex $t$ number: $${_4F_3}\left(\begin{array}c1,1,\tfrac54,\tfrac74\\\tfrac32,2,2\end{array}\middle|\,-t\right) \stackrel{?}{=} \frac{16}{3t}\ln\left(\tfrac14\sqrt{1+\sqrt{1+t}}\left(\sqrt{1+\sqrt{1+t}}+\sqrt{2}\right)\right),$$ where ${_4F_3}$ is a generalized hypergeometric function.
How could we prove this conjectured identity?
Some special cases:
$$\begin{align} {_4F_3}\left(\begin{array}c1,1,\tfrac54,\tfrac74\\\tfrac32,2,2\end{array}\middle|\,-4\right) &\stackrel{?}{=} \frac{4}{3}\ln\left(\frac{\sqrt{\varphi}+\varphi}{2}\right),\\ {_4F_3}\left(\begin{array}c1,1,\tfrac54,\tfrac74\\\tfrac32,2,2\end{array}\middle|\,-8\right) &\stackrel{?}{=} \frac{2}{3}\ln\left(\frac{\sqrt2 + 2}{2}\right),\\ {_4F_3}\left(\begin{array}c1,1,\tfrac54,\tfrac74\\\tfrac32,2,2\end{array}\middle|\,-15\right) &\stackrel{?}{=} \frac{16}{45}\ln\left(\frac{\sqrt{10} + 5}{4}\right),\\ {_4F_3}\left(\begin{array}c1,1,\tfrac54,\tfrac74\\\tfrac32,2,2\end{array}\middle|\,-35\right) &\stackrel{?}{=} \frac{16}{105}\ln\left(\frac{\sqrt{14} + 7}{4}\right),\\ {_4F_3}\left(\begin{array}c1,1,\tfrac54,\tfrac74\\\tfrac32,2,2\end{array}\middle|\,-48\right) &\stackrel{?}{=} \frac{1}{9}\ln 3, \end{align}$$ where $\varphi$ is the golden ratio.
Specially for all $n \neq 1$ nonnegative integers
$${_4F_3}\left(\begin{array}c1,1,\tfrac54,\tfrac74\\\tfrac32,2,2\end{array}\middle|\,1-n^2\right) \stackrel{?}{=} \frac{16}{3n^2-3}\ln\left(\frac{\sqrt{2n+2}+(n+1)}{4}\right).$$