$F$ is a finite field of order $q$. What is the size of $\operatorname{GL}_n(F)$ ?
I am reading Dummit and Foote "Abstract Algebra". The following formula is given: $(q^n - 1)(q^n - q)\cdots(q^n - q^{n-1})$. The case for $n = 1$ is trivial. I understand that for $n = 2$ the first row of the matrix can be any ordered pair of field elements except for $0,0$. and the second row can be any ordered pair of field elements that is not a multiple of the first row. So for $n = 2$ there are $(q^n - 1)(q^n - q)$ invertible matrices. For $n\geq 3$, I cannot seem to understand why the formula works. I have looked at Sloane's OEIS A002884. I have also constructed and stared at a list of all $168$ $3\times 3$ invertible matrices over $GF(2)$. I would most appreciate a concrete and detailed explanation of how say $(2^3 - 1)(2^3 - 2)(2^3 - 2^2)$ counts these $168$ matrices.