1

Solve this limit usinig Stolz's theorem. Any help?!

$$\lim\limits_{n\rightarrow \infty} \frac{n}{\sqrt[n]{n!}}$$

Zain Patel
  • 16,802

1 Answers1

2

This provides another way.

Let $a_{n} > 0$ for all $n \geq 1$. Then it can be shown that $$\liminf a_{n+1}/a_{n} \leq \liminf (a_{n})^{1/n} \leq \limsup (a_{n})^{1/n} \leq \limsup a_{n+1}/a_{n}.$$ Thus if there is some $l \in \mathbb{R}$ such that $a_{n+1}/a_{n} \to l$ then $(a_{n})^{1/n} \to l$.

Let $a_{n} := n^{n}/n!$ for all $n \geq 1$. Then $(a_{n})^{1/n} = (n^{n}/n!)^{1/n}$ for all $n \geq 1$. But, since $$ \frac{a_{n+1}}{a_{n}} = \frac{(n+1)^{n+1}}{(n+1)!}\cdot \frac{n!}{n^{n}} = (1+\frac{1}{n})^{n} \to e $$ as $n$ grows, we have $(a_{n})^{1/n} \to e$ as $n$ grows.

Yes
  • 20,719