Here is the question:
$$\frac{\sqrt{10+\sqrt{1}}+\sqrt{10+\sqrt{2}}+\cdots+\sqrt{10+\sqrt{99}} }{\sqrt{10-\sqrt{1}}+\sqrt{10-\sqrt{2}}+\cdots+\sqrt{10-\sqrt{99}}} = \;?$$
I think we need to simplify it writing it in summation sign as you can see here:
$$\frac{\sum\limits_{n=1}^{99} \sqrt{10 + \sqrt{n}}}{\sum\limits_{n=1}^{99} \sqrt{10 - \sqrt{n}}}$$
or in Wolfram Alpha input in comments.
I can compute it too! It's easy to write a script for this kind of question. I need a way to solve it. How would you solve it on a piece of paper?