I have the equation $x^2=x$.
If I divide $x$ from both sides I get $x=1$.
Yet clearly $x$ can also equal $0$.
What step in this process is wrong? It seems to me that there's only one step. And isn't dividing the same thing from both sides a valid step?
I hope this isn't a stupid question because I feel dumb asking about something so basic.
EDIT: To clarify, what I'm looking for is not only an explanation for why my methodology is wrong, but also a better methodology that will keep me from missing possible solutions in the future.
It looks like my answer can be found here: http://math.stackexchange.com/questions/67994/why-should-you-never-divide-both-sides-by-a-variable-when-solving-an-equation
I guess I'm just not supposed to divide by $x$ in the first place. Or rather, I'm supposed to take cases if I do, as chhro said.
– Kyle Delaney Aug 18 '15 at 16:33