Let $f_n(x)=\sum_{r=0}^n\,\binom{n}{r}\,\frac{x^r}{r+3}$ for $x\in\mathbb{R}$ and $n\in\mathbb{N}$. Then,
$$\frac{\text{d}}{\text{d}x}\,\left(x^3\,f_n(x)\right)=\sum_{r=0}^n\,\binom{n}{r}\,x^{r+2}=x^2(1+x)^n\,.$$
Because $x^3f_n(x)$ is $0$ when $x=0$, we conclude that
$$f_n(x)=x^{-3}\,\int_0^x\,t^2(1+t)^n\,\text{d}t\,.$$
Write $a_n:=f_n\left(\frac{1}{n}\right)$. We are looking for $\displaystyle\lim_{n\to\infty}\,a_n$.
Note that
$$a_n=n^3\,\int_0^{1/n}\,t^2(1+t)^n\,\text{d}t=\int_0^1\,s^2\left(1+\frac{s}{n}\right)^n\,\text{d}s\,,$$
where $s:=nt$. Let $g_n(s):=s^2\left(1+\frac{s}{n}\right)^n$ for $n\in\mathbb{N}$ and $s\in[0,1]$. Observe that $g_n$ converges uniformly (or increasingly) to $g$ as $n\to\infty$, where $g(s):=s^2\exp(s)$ for all $s\in[0,1]$. Hence, we can switch the limit and the integral, and obtain
$$\lim_{n\to\infty}\,a_n=\int_0^1\,s^2\exp(s)\,\text{d}s=\text{e}-2\,,$$
which is irrational.
In general, if $F_n(a,x):=\sum_{r=0}^n\,\binom{n}{r}\,\frac{x^r}{n^r(r+a)}$ for $n\in\mathbb{N}$, $a\in\mathbb{C}$ with $\text{Re}(a)>0$, and $x\in\mathbb{C}$, then $$F_n(a,x)=\int_0^x\,s^{a-1}\,\left(1+\frac{s}{n}\right)^n\,\text{d}s\,.$$
Hence,
$$\lim_{n\to\infty}\,F_n(a,x)=\int_0^x\,s^{a-1}\,\exp(s)\,\text{d}s=(-1)^{-a}\,\gamma(a,-x)\,,$$
where $\gamma$ is the lower incomplete gamma function.