It can be shown that:
\begin{align}
\sum_{n=1}^{\infty} \ln^{2}\left(1+\frac{1}{2n}\right) \, \ln^{2}\left(1 + \frac{1}{2n+1}\right) = - \frac{\ln^{4} 2}{2} + 2 \, \sum_{n=1}^{\infty} \ln^{2}\left(1 + \frac{1}{n}\right) \, \ln\left(1+\frac{1}{2n}\right) \, \ln\left(1 + \frac{1}{2n+1}\right).
\end{align}
The remaining summation may be presentable in a form not based on numerical estimation. In the event a few decimal place accuracy is sought the following identity is presented. Accurate to 9 decimal places the series is given by
\begin{align}
\sum_{n=1}^{\infty} \ln^{2}\left(1+\frac{1}{2n}\right) \, \ln^{2}\left(1 + \frac{1}{2n+1}\right) = \left( \frac{1}{2} - \frac{1}{5^{\frac{32}{37}} \, \gamma} \right) \, \ln^{4}2 \approx 0.01600318562\cdots
\end{align}
where $\gamma$ is the Euler-Mascheroni constant.
Proof:
Let
$$f(x) = \ln\left(1 + \frac{1}{x}\right) \tag{1}$$
then
$$f^{2}(n) = ( f(2n) + f(2n+1) )^{2} = f^{2}(2n) + f^{2}(2n+1) + 2 \, f(2n) \, f(2n+1) \tag{2}$$
which yields
$$f(2n) \, f(2n+1) = \frac{1}{2} \, [ f^{2}(n) - f^{2}(2n) - f^{2}(2n+1) ]. \tag{3}$$
Squaring both sides provides
\begin{align}
& f^{2}(2n) \, f^{2}(2n+1) \\
& \hspace{5mm} = \frac{1}{4} \, [ f^{4}(n) + f^{4}(2n) + f^{4}(2n+1) - 2 \, f^{2}(n) \, ( f^{2}(2n) + f^{2}(2n+1) ) + 2 \, f^{2}(2n) \, f^{2}(2n+1) ]
\end{align}
or
$$f^{2}(2n) \, f^{2}(2n+1) = \frac{1}{2} \, [ f^{4}(n) + f^{4}(2n) + f^{4}(2n+1) - 2 \, f^{2}(n) \, ( f^{2}(2n) + f^{2}(2n+1) ) ] \tag{4}$$
By making use of (1) this reduces to
$$f^{2}(2n) \, f^{2}(2n+1) = - \frac{1}{2} \, [f^{4}(n) - f^{4}(2n) - f^{4}(2n+1) ] + 2 \, f^{2}(n) \, f(2n) \, f(2n+1). \tag{5}$$
Now, summing over the index then it is seen that:
\begin{align}
S &= \sum_{n=1}^{\infty} f^{2}(2n) \, f^{2}(2n+1) \\
&= - \frac{1}{2} \, \sum_{n=1}^{\infty} \left[ f^{4}(n) - f^{4}(2n) - f^{4}(2n+1) \right] + 2 \, \sum_{n=1}^{\infty} f^{2}(n) \, f(2n) \, f(2n+1) \\
&= - \frac{1}{2} \, f^{4}(1) + + 2 \, \sum_{n=1}^{\infty} f^{2}(n) \, f(2n) \, f(2n+1) \tag{6}
\end{align}
From (6) the first statement presented is obtained. As to the remaining summation it is conjectured that it is also of the form $A_{0} \, \ln^{4}2$.