I'll rederive Henry's result,
and extend it,
since I did it while he
entered his comment.
If we replicate
the OP's computation,
but with multiplier 3,
we find that
3 x 123456789 = 370370370370.
This leads to the conjecture that
if $m$ and $b-1$ are
relatively prime,
then
$m\cdot s_b$
is a permutation
of the digits.
I can show that
this is true for
$m = b-2$.
The method I use
might be generalized for
other $m$.
(Comment added later:
if we look at the products
for base 10,
notice that
for 8 there are
8 decreasing digits before the final 2,
for 7 there are
4 and 4 decreasing before the final 3,
and for
5 there are
4 pairs of decreasing digits
before the final 5.
This might be provable
using the results
at the end of my answer.)
To show
$s_b
=\sum_{k=1}^{b-1} k b^{b-k-1}
=\frac{b^b-b}{(b-1)^2}-1
$.
Since
$\begin{array}\\
\sum_{k=1}^{n} k r^{k-1}
&=\frac{1-r^{n+1}}{(1-r)^2}-\frac{(n+1)r^n}{1-r}\\
&=\frac{1-r^{n+1}-(1-r)(n+1)r^n}{(1-r)^2}\\
&=\frac{1-(n+1)r^n+nr^{n+1}}{(1-r)^2}\\
\end{array}
$
putting $r = 1/b$ and $n = b-1$,
$\begin{array}\\
s_b
&=\sum_{k=1}^{b-1} k b^{b-k-1}\\
&=b^{b-2}\sum_{k=1}^{b-1} k b^{-k+1}\\
&=b^{b-2}\sum_{k=1}^{b-1} k (1/b)^{k-1}\\
&=b^{b-2}\frac{1-b(1/b)^{b-1}+(b-1)(1/b)^b}{(1-1/b)^2}\\
&=\frac{b^{b-2}-1+(b-1)/b^2}{(1-1/b)^2}\\
&=\frac{b^b-b^2+b-1}{(b-1)^2}\\
&=\frac{b^b-(b^2-b+1)}{(b-1)^2}\\
&=\frac{b^b-b-(b^2-2b+1)}{(b-1)^2}\\
&=\frac{b^b-b}{(b-1)^2}-1\\
&=b\frac{b^{b-1}-1}{(b-1)^2}-1\\
&=b\frac{(b-1)\sum_{k=0}^{b-2}b^k}{(b-1)^2}-1
\quad\text{(now I try to look at the base b digits)}\\
&=b\frac{\sum_{k=0}^{b-2}b^k}{b-1}-1\\
&=\frac{\sum_{k=0}^{b-2}b\ b^k}{b-1}-1\\
&=\frac{\sum_{k=0}^{b-2}(b-1+1)\ b^k}{b-1}-1\\
&=\sum_{k=0}^{b-2} b^k+\frac{\sum_{k=0}^{b-2}b^k}{b-1}-1\\
&=\sum_{k=1}^{b-2} b^k+\frac{\sum_{k=0}^{b-2}b^k}{b-1}\\
\end{array}
$
From this,
$m\cdot s_b
=m\sum_{k=1}^{b-2} b^k+m\frac{\sum_{k=0}^{b-2}b^k}{b-1}
$.
This is,
in base $b$,
$b-2$ $m$'s and a zero digit
added to
$m$ times
$b-1$ $m$'s divided by
$b-1$.
If $m=b-2$,
which is relatively prime
to $b-1$,
$\begin{array}\\
(b-2)\cdot s_b
&=(b-2)\sum_{k=1}^{b-2} b^k+(b-2)\frac{\sum_{k=0}^{b-2}b^k}{b-1}\\
&=(b-2)\sum_{k=1}^{b-2} b^k+(b-1-1)\frac{\sum_{k=0}^{b-2}b^k}{b-1}\\
&=(b-2)\sum_{k=1}^{b-2} b^k+\sum_{k=0}^{b-2}b^k-\frac{\sum_{k=0}^{b-2}b^k}{b-1}\\
&=1+(b-1)\sum_{k=1}^{b-2} b^k-\frac{\sum_{k=0}^{b-2}b^k}{b-1}\\
&=(b-2)+(b-1)\sum_{k=1}^{b-2} b^k-\frac{b^{b-1}-1}{(b-1)^2}\\
&=1+(b-1)\sum_{k=1}^{b-2} b^k-\frac{s_b+1}{b}\\
\end{array}
$.
$s_b+1
=1+\sum_{k=1}^{b-1} k b^{b-k-1}
=b+\sum_{k=1}^{b-2} k b^{b-k-1}
$
so
$\frac{s_b+1}{b}
=1+\sum_{k=1}^{b-2} k b^{b-k-2}
$
and this has,
in base $b$,
the digits
$1, 2, ..., b-4, b-3, b-1$
(the 1 changes the last b-2 to b-1).
Subtracting this from
$b-1, b-1, ..., b-1, b-1, 1$,
we get
$b-1, b-2, b-3, ..., 3, 1, 2$
which is a permutation of
1 through $b-1$.
That's enough for me,
for now.