13

I have been looking at the following sum (for any positive integer $n$)

$$\left(1-\frac{1^2}{n}\right) + \left(1-\frac{1}{n}\right)\left(1-\frac{2^2}{n}\right) + \left(1-\frac{1}{n}\right)\left(1-\frac{2}{n}\right)\left(1-\frac{3^2}{n}\right) + \ldots $$

Note that the $i$th term in the sum has $i$ factors and is

$$\left(1-\frac{1}{n}\right)\left(1-\frac{2}{n}\right)\left(1-\frac{3}{n}\right)\dots \left(1-\frac{i-1}{n}\right)\left(1-\frac{i^2}{n}\right).$$

It seems, amazingly, that the answer is 0. How can one show this?

  • 2
    I think there should be $(1-1/n)(1-2^2/n)(1-3^2/n)$ – Oussama Boussif Aug 12 '15 at 15:32
  • 3
    @OussamaBoussif I think it's correct as I have written it. –  Aug 12 '15 at 15:38
  • 1
    @Lembik: If that's the case, what is the form of the $i$th term? Like Oussama, I thought it was $(1-1^2/n)(1-2^2/n)(1-3^2/n)\dots(1-i^2/n)$. Are you saying that it's $(1-1/n)(1-2/n)(1-3/n)\dots(1-i^2/n)$? – hexaflexagonal Aug 12 '15 at 15:41
  • 1
    @Lembik aah so basically it's like this?: $\sum_{k=1}^{\infty}(1-\frac{k^2}{n})\prod_{i=1}^{k-1}(1-\frac{k}{n})$ – Oussama Boussif Aug 12 '15 at 15:42
  • 2
    @DivergentQueries Yes exactly. It is $(1-1/n)(1-2/n)(1-3/n)\dots(1-i^2/n)$ –  Aug 12 '15 at 15:42
  • Can you fix the formula in the question then please. As it stands, the second term has two factors rather than four and the third term has three factors rather than nine. – Rob Arthan Aug 12 '15 at 15:54
  • @RobArthan, the ith term has i factors, of which only the last one has a squared numerator. – Empy2 Aug 12 '15 at 15:55
  • Perhaps it would be clearer if the first term is shown as $(1-\frac{1^2}n)$. – Hypergeometricx Aug 12 '15 at 15:56
  • Then your comment should say $(1-1/n)(1-2/n)(1-3/n)\ldots(1-(i-1)/n)(1-i^2/n)$ (and you should include that in the statement of your question). – Rob Arthan Aug 12 '15 at 15:57
  • 1
    In the summation formula given in one of the comments above the term after the product sign should read $(1-\frac in)$ instead of $(1-\frac kn)$. – Hypergeometricx Aug 12 '15 at 15:58

4 Answers4

15

This might get you started:

$$\begin{align} &\left(1-{1^2\over n}\right)+\left(1-{1\over n}\right)\left(1-{2^2\over n}\right)+\left(1-{1\over n}\right)\left(1-{2\over n}\right)\left(1-{3^2\over n}\right)+\cdots\\ &\quad=\left(1-{1\over n}\right)\left(1+\left(1-{2^2\over n}\right)+\left(1-{2\over n}\right)\left(1-{3^2\over n}\right)+\cdots \right)\\ &\quad=\left(1-{1\over n}\right)\left(\left(2-{2^2\over n}\right)+\left(1-{2\over n}\right)\left(1-{3^2\over n}\right)+\cdots \right)\\ &\quad=\left(1-{1\over n}\right)\left(1-{2\over n}\right)\left(2+\left(1-{3^2\over n}\right)+\left(1-{3\over n}\right)\left(1-{4^2\over n}\right)+\cdots \right)\\ &\quad=\left(1-{1\over n}\right)\left(1-{2\over n}\right)\left(\left(3-{3^2\over n}\right)+\left(1-{3\over n}\right)\left(1-{4^2\over n}\right)+\cdots \right)\\ &\quad=\left(1-{1\over n}\right)\left(1-{2\over n}\right)\left(1-{3\over n}\right)\left(3+\left(1-{4^2\over n}\right)+\left(1-{4\over n}\right)\left(1-{5^2\over n}\right)+\cdots \right)\\ \end{align}$$

Barry Cipra
  • 79,832
2

This becomes somewhat less mysterious once we recognize that every term after the $n$th term includes $\left(1-\frac{n}{n}\right)=0$.

1

The following holds true for $n\geq 1$

\begin{align*} \sum_{k=1}^{\infty}\left(1-\frac{k^2}{n}\right)\prod_{j=1}^{k-1}\left(1-\frac{j}{n}\right)=0\tag{1} \end{align*}

Note, the empty product is set equal to $1$. We start by transforming the product into a somewhat more convenient form .

\begin{align*} \sum_{k=1}^{\infty}&\left(1-\frac{k^2}{n}\right)\prod_{j=1}^{k-1}\left(1-\frac{j}{n}\right)\\ &=\sum_{k=1}^{n}\left(1-\frac{k^2}{n}\right)\frac{1}{n^{k-1}}\prod_{j=1}^{k-1}(n-j)\tag{2}\\ &=n!\sum_{k=1}^{n}\left(1-\frac{k^2}{n}\right)\frac{1}{n^k}\frac{1}{(n-k)!}\\ &=\frac{n!}{n^n}\sum_{k=0}^{n-1}\left(1-\frac{(n-k)^2}{n}\right)\frac{n^k}{k!}\tag{3}\\ \end{align*}

In (2) we set the upper limit of the sum to $n$ since for values greater than $n$ the product contains a factor zero. In the last step (3) we changed the index summation $k\rightarrow n-k$. In the following we skip the factor $\frac{n!}{n^n}$ and show the sum is equal to zero.

\begin{align*} \sum_{k=0}&\left(1-\frac{(n-k)^2}{n}\right)\frac{n^k}{k!}\\ &=\frac{1}{n}\sum_{k=0}^{n-1}(n-n^2+2kn-k^2)\frac{n^k}{k!}\\ &=(1-n)\sum_{k=0}^{n-1}\frac{n^k}{k!}+2\sum_{k=1}^{n-1}k\frac{n^k}{k!} -\frac{1}{n}\sum_{k=2}^{n-1}k(k-1)\frac{n^k}{k!}-\frac{1}{n}\sum_{k=1}^{n-1}k\frac{n^k}{k!}\tag{4}\\ &=(1-n)\sum_{k=0}^{n-1}\frac{n^k}{k!}+2n\sum_{k=0}^{n-2}\frac{n^k}{k!} -n\sum_{k=0}^{n-3}\frac{n^k}{k!}-\sum_{k=0}^{n-2}\frac{n^k}{k!}\tag{5}\\ &=\frac{n^{n-1}}{(n-1)!}-n\frac{n^{n-1}}{(n-1)!}+n\frac{n^{n-2}}{(n-2)!}\\ &=\frac{n^{n-1}}{(n-1)!}\left(1-n+(n-1)\right)\\ &=0\\ &\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\Box \end{align*}

Comment:

  • In (4) we set the lower bounds of the index accordingly and use $k^2=k(k-1)+k$ to be able to cancel out factors of the factorial conveniently.

  • In (5) we adjust the index accordingly to obtain equal summands for telescoping in the next step.

Added 2015-08-13: A note to the elegant approach of @BarryCipra due to a comment of @hypergeometric.

Let $R$ be a positive integer less than $n$. We obtain from (1)

\begin{align*} \sum_{k=1}^{\infty}&\left(1-\frac{k^2}{n}\right)\prod_{j=1}^{k-1}\left(1-\frac{j}{n}\right)\\ &=\sum_{k=1}^{R}\left(1-\frac{k^2}{n}\right)\prod_{j=1}^{k-1}\left(1-\frac{j}{n}\right)+ \sum_{k=R+1}^{\infty}\left(1-\frac{k^2}{n}\right)\prod_{j=1}^{k-1}\left(1-\frac{j}{n}\right)\\ &=\prod_{r=1}^R\left(1-\frac{r}{n}\right)\left(\sum_{k=1}^{R}\left(1-\frac{k^2}{n}\right)\prod_{j=k}^R\left(1-\frac{j}{n}\right)^{-1}\right.\\ &\qquad\qquad\qquad\qquad+\left.\sum_{k=R+1}^{\infty}\left(1-\frac{k^2}{n}\right)\prod_{j=R+1}^{k-1}\left(1-\frac{j}{n}\right)\right)\tag{6}\\ &=\prod_{r=1}^R\left(1-\frac{r}{n}\right)\left(R+\sum_{k=R+1}^{\infty}\left(1-\frac{k^2}{n}\right)\prod_{j=R+1}^{k-1}\left(1-\frac{j}{n}\right)\right)\tag{7} \end{align*}

Comment:

  • Observe the last line of @BarryCipras representation corresponds to (7) with $R=3$.

  • Since we know that (7) is valid, we proceed from (6) to (7) by claiming the validity of the identity

\begin{align*} \sum_{k=1}^{R}\left(1-\frac{k^2}{n}\right)\prod_{j=k}^R\left(1-\frac{j}{n}\right)^{-1}=R\qquad\qquad 1\leq R < n \end{align*}

This identity is a nice by-product.

  • When setting $R\geq n$ in (7) we observe, that the leftmost product contains a factor zero. But we can't use this argument in this derivation, since we have to consider in (6) the factors $\left(1-\frac{j}{n}\right)^{-1}$ which are undefined in case $j=n$.
Markus Scheuer
  • 108,315
0

The partial sums are $$\begin{eqnarray} 1/2&0\\ 2/3&4/9&0\\ 3/4&12/16&18/64&0\\ 4/5&24/25&72/125&96/625&0\\ 5/6&40/36&180/216&480/1296&600/6^5&0\end{eqnarray}$$ The ratios from one partial sum to the next are $$\begin{eqnarray}0\\ 2/3&0\\ 4/4&(3/2)/4&0\\ 6/5&(6/2)/5&(4/3)/5&0\\ 8/6&(9/2)/6&(8/3)/6&(5/4)/6&0\end{eqnarray}$$ So is the sum of the first $k$ terms, with $n$ as the key variable, $$\frac{\frac{(n-1)!}{(n-1-k)!}k}{n^k}$$

Empy2
  • 50,853