$2730 = 2\times 3\times 5\times 7\times 13$
Let's consider two cases:
First case:
if n is divisible by 2730 then $n\equiv 0[2730]$ so ${ n }^{ 13 }\equiv 0[2730]$ which means ${ n }^{ 13 }\equiv n[2730]$.
Second case $\gcd(2730,n)=1$:
Then all the prime divisors of $2730$ will be coprime with n.
Using Fermat little's theorem for $2, 3,5, 7, 13$:
$$
{ n }\equiv 1[2]\longrightarrow { n }^{ 12 }\equiv 1[2]\\ { { n }^{ 2 } }\equiv 1[3]\longrightarrow { n }^{ 12 }\equiv 1[3]\\ { { n }^{ 4 } }\equiv 1[5]\longrightarrow { n }^{ 12 }\equiv 1[5]\\ { { n }^{ 6 } }\equiv 1[7]\longrightarrow { n }^{ 12 }\equiv 1[7]\\ { { n }^{ 12 } }\equiv 1[13]\longrightarrow { n }^{ 12 }\equiv 1[13]\\
$$
Which yields: $2730|{ n }^{ 12 }-1$ so:
$$
{ n }^{ 12 }\equiv 1[2730]\longrightarrow { n }^{ 13 }\equiv n[2730]\\ \qquad \qquad \qquad \longrightarrow \quad 2730|{ n }^{ 13 }-n
$$
Third case $d = \gcd(n,2730)\quad \neq 1$:
In this case $n = d\alpha$ and $2730 = dq$
So:
$$
n\equiv n[2730]\\ d\alpha \equiv d\alpha [dq]\\ \alpha \equiv \alpha [q]
$$
And you apply the same method I did in the previous cases.
Hence proved for all n ^^.
Note:
For all primes ${ p }_{ 1 },{ p }_{ 2 },{ p }_{ 3 },...{ p }_{ m }$:
${ p }_{ 1 }|n,\quad { p }_{ 2 }|n,\quad { p }_{ 3 }|n,\quad ...{ p }_{ m }|n\Longleftrightarrow { p }_{ 1 }{ p }_{ 2 }...{ p }_{ m }|n$