Let $ f$ be a continious function and $a>0$
calculate the limit $$ \lim \limits_{x \to 0} x^a \int_x^1 \frac{f(t)}{t^{a+1}} \, dt$$
i tried to divied to 2 cases, if $ \lim \limits_{x \to 0} \int_x^1 \frac{f(t)}{t^{a+1}} \, dt = L < \infty$
then the answer is clearly $0$, else we can use l'Hopital rule, but I'm not sure how to apply it on the integral,
I know that if $F(x) = \int_0^x \frac{f(t)}{t^{a+1}} \, dt$ then the derivative will be $\frac{f(x)}{x^{a+1}} $ but what do i do with $\int_x^1$
thx