16

The following fascinating formula appears in the paper "On gamma quotients and infinite products" by M.Chamberland and A.Straub (see page 9): $$\prod_{n=2}^\infty\left(1-\frac{1}{n(n-1)}\right)=-\frac1\pi\cos\left(\frac{\sqrt5}{2}\pi\right).$$ Unfortunately, it's given without any reference or explanation. Could anyone give one?

pie
  • 4,192
CuriousGuest
  • 4,291
  • 1
  • 19
  • 33
  • My first thought was to expand the product as follows: $\prod_{n=2}^{\infty}(1-b_{n})=1-\sum_{n=2}^{\infty}b_{n}+\sum_{n,m=2,n\neq m}^{\infty}b_{n}b_{m}-....$ but that does not seem like an approach that simplifies anything. – Tucker Aug 05 '15 at 21:55
  • 2
    One observation: $1 - \frac1{n(n-1)} = \frac{n^2-n-1}{4n(n-1)} = \frac{(2n-1+\sqrt5)(2n-1-\sqrt5)}{n(n-1)}$ - so the $\sqrt5$ doesn't seem so random. A possible approach as to computing the product is to take logs and turn it into a sum. – Math1000 Aug 05 '15 at 21:59
  • 1
    why $4$ in the denominator? – Oussama Boussif Aug 05 '15 at 22:03
  • Why $2n$ in the numerator? – Tucker Aug 05 '15 at 22:05
  • Math1000 is correct, there should be a 4 in the denominator in the last line though. – Tucker Aug 05 '15 at 22:07
  • Someone should figure out a way to resurrect Ramanujan. He'd probably prove this result in his sleep. – wltrup Aug 05 '15 at 22:14
  • @wltrup As it so happens, Ramanujan is one of the few mathematicians I know of who literally would prove identities in his sleep on the regular. He claimed the goddess Namigiri would reveal them to him in his dreams, also the only case of divine revelation of non-trivial mathematical results I've ever been able to find. TMYK :) – David H Aug 05 '15 at 22:40
  • @DavidH I know! That's why I mentioned it. – wltrup Aug 06 '15 at 00:01
  • Another method would be to use the product formula for cosine. See a similar one at: https://math.stackexchange.com/a/4306210/442 – GEdgar Nov 14 '21 at 21:21

5 Answers5

10

This formula is an application of the theorem $1.1$ for $n=2$ from your Chamberland & Straub paper (when $a+b=c+d$) : $$\tag{1}\prod_{k\ge 0}\frac {(k+a)(k+b)}{(k+c)(k+d)}=\frac {\Gamma(c)\Gamma(d)}{\Gamma(a)\Gamma(b)}$$ Observe first that : $\quad\displaystyle n^2-n-1=\left(n-\frac{\sqrt{5}+1}2\right)\left(n+\frac{\sqrt{5}-1}2\right)\;$
An idea is to use $\quad a:=-\dfrac{\sqrt{5}+1}2,\;b:=\dfrac{\sqrt{5}-1}2$.

note that $\;a+b=-1\;$ and take $c=0,\;d=-1$ but we would have $\;0\cdot (-1)\;$ at the denominator so let's shift all these values with an offset $2$ (i.e. set $n:=k+2$) then : $$a:=2-\frac{\sqrt{5}+1}2,\;b:=2+\frac{\sqrt{5}-1}2,\;c:=2,\;d:=1$$ we then get : \begin{align} \prod_{k\ge 0}\frac {(k+2)^2-(k+2)-1}{(k+2)(k+1)}&=\frac {\Gamma(2)\Gamma(1)}{\Gamma\left(2-\frac{\sqrt{5}+1}2\right)\Gamma\left(2+\frac{\sqrt{5}-1}2\right)}\\ &=\frac 1{\left(1-\frac{\sqrt{5}+1}2\right)\left(1+\frac{\sqrt{5}-1}2\right)\Gamma\left(1-\frac{\sqrt{5}+1}2\right)\Gamma\left(1+\frac{\sqrt{5}-1}2\right)}\\ \tag{2}&=-\frac 1{\Gamma\left(1-\frac{\sqrt{5}+1}2\right)\Gamma\left(\frac{\sqrt{5}+1}2\right)} \end{align}

Using the Euler reflexion formula $\displaystyle \Gamma(z)\Gamma(1-z)=\dfrac{\pi}{\sin(\pi z)}$ for $z=\dfrac {\sqrt{5}+1}2$ allows to get : $$\prod_{n\ge 1}\frac {(n+1)^2-(n+1)-1}{n(n+1)}=-\frac {\sin\left(\pi(\sqrt{5}+1)/2\right)}{\pi}$$ and conclude that indeed : $$\tag{3}\prod_{n\ge 1}\left(1-\frac 1{n(n+1)}\right)=-\frac {\sin\left(\pi(\sqrt{5}+1)/2\right)}{\pi}=-\frac1\pi\cos\left(\frac{\sqrt5}{2}\pi\right)$$

Raymond Manzoni
  • 43,021
  • 5
  • 86
  • 140
7

Indeed noticing $n^2-n-1= (n-\phi_+)(n-\phi_-)$ where $\phi_+=\frac{1+\sqrt{5}}{2}$ and $\phi_-=\frac{1-\sqrt{5}}{2}$, We have $$\prod_{n=2}^\infty\left(1-\frac{1}{n(n-1)}\right)=\prod_{n=2}^{\infty}\frac{(n-\phi_+)(n-\phi_-)}{(n-0)(n-1)}=\\ \prod_{n=0}^{\infty}\frac{(n+2-\phi_+)(n+2-\phi_-)}{(n+2)(n+1)}=\frac{\Gamma(2)\Gamma(1)}{\Gamma(2-\phi_+)\Gamma(2-\phi_-)}$$

Where I used the formula $$\prod_{n=0}^{\infty} \frac{(n+a_1)(n+a_2)\cdots(n+a_i)}{(n+b_1)(n+b_2)\cdots(n+b_i)}=\frac{\Gamma(b_1)\Gamma(b_2)\cdots\Gamma(b_i)}{\Gamma(a_1)\Gamma(a_2)\cdots\Gamma(a_i)}$$ which holds whenever $a_1+a_2+\dots+a_i=b_1+b_2+\dots+b_i$.

This follows from Euler's product form of the Gamma function. (and is also the topic of that paper)

The rest follows from the reflection formula $$\Gamma(s)\Gamma(1-s)=\frac{\pi}{\sin(\pi s)}$$, and some adjustments.

4

$$ \begin{align} \prod_{n=2}^\infty\left(1-\frac1{n(n-1)}\right) &=\prod_{n=2}^\infty\frac{n^2-n-1}{n(n-1)}\tag{1}\\ &=\lim_{N\to\infty}\prod_{n=2}^N\frac{(n-\phi)(n+\phi-1)}{n(n-1)}\tag{2}\\ &=\lim_{N\to\infty}\overbrace{\frac{\Gamma(N+1-\phi)}{\Gamma(2-\phi)}}^{\large\prod(n-\phi)} \overbrace{\frac{\Gamma(N+\phi)}{\Gamma(1+\phi)}}^{\large\prod(n+\phi-1)} \overbrace{\frac{\Gamma(2)}{\Gamma(N+1)}}^{\large\prod\frac1n} \overbrace{\frac{\Gamma(1)}{\Gamma(N)}}^{\large\prod\frac1{n-1}}\tag{3}\\ &=\frac{\Gamma(2)\Gamma(1)}{\Gamma(2-\phi)\Gamma(1+\phi)}\tag{4}\\ &=\frac1{\Gamma(2-\phi)\Gamma(\phi-1)}\tag{5}\\ &=\frac{\sin(\pi/\phi)}\pi\tag{6}\\ &=-\frac1\pi\cos\left(\frac{\sqrt5}2\pi\right)\tag{7} \end{align} $$ Explanation:
$(1)$: make difference a single quotient
$(2)$: factor numerator
$(3)$: use $\Gamma(x+1)=x\Gamma(x)$
$(4)$: use Gautschi's Inequality and the Squeeze Theorem
$(5)$: $\Gamma(2)=\Gamma(1)=1$ and $\Gamma(\phi+1)=\phi(\phi-1)\Gamma(\phi-1)=\Gamma(\phi-1)$
$(6)$: Euler Reflection Formula
$(7)$: $\sin(x-\pi/2)=-\cos(x)$

robjohn
  • 345,667
4

We want to compute: $$S=\sum_{n\geq 1}\log\left(1-\frac{1}{n(n+1)}\right)=\sum_{n\geq 1}\int_{0}^{+\infty}\frac{e^{-(n^2+n-1)x}-e^{-(n^2+n)x}}{x}\,dx$$ where the identity follows from Frullani's theorem. Since $\int_{0}^{+\infty}\frac{f(x)}{x}\,dx=\int_{0}^{+\infty}\mathcal{L}(f)(s)\,ds$, $$ S = \int_{0}^{+\infty}\sum_{n\geq 1}\left(\frac{1}{n^2+n-1+s}-\frac{1}{n^2+n+s}\right)\,ds $$ that is just: $$ S = 4\int_{0}^{1}\sum_{n\geq 1}\frac{1}{(2n+1)^2+(s-5)}\,ds=\int_{0}^{1}\left(\frac{1}{1-s}+\frac{\pi\tan\left(\frac{\pi}{2}\sqrt{5-4s}\right)}{\sqrt{5-4s}}\right)\,ds$$ or: $$ S = \int_{0}^{4}\left(\frac{1}{s}+\frac{\pi\tan\left(\frac{\pi}{2}\sqrt{1+s}\right)}{4\sqrt{1+s}}\right)\,ds=\int_{1}^{\sqrt{5}}\left(\frac{2s}{s^2-1}+\frac{\pi}{2}\,\tan\left(\frac{\pi s}{2}\right)\right)\,ds $$ so: $$ S = \left. \log(s^2-1)-\log\cos\frac{\pi s}{2}\right|_{1}^{\sqrt{5}} = \log\left(-\pi\sec\frac{\pi\sqrt{5}}{2}\right)$$ and by exponentiating: $$ \prod_{n\geq 1}\left(1-\frac{1}{n(n+1)}\right) = -\frac{1}{\pi}\,\cos\frac{\pi\sqrt{5}}{2}$$ as wanted.

Jack D'Aurizio
  • 353,855
3

We will be only dealing with the following identities:

$$ \Gamma (z) = \frac{ e^{ -\gamma z }}{ z } \, \prod_{ k=1 }^{ \infty } \left\{ \left( 1+\frac{ z }{ k } \right)^{ -1 } \, e^{ \frac { z }{ k } } \right\} \hspace{10mm} \Gamma (-z)\Gamma (z)\quad =\quad \frac { -\pi }{ z \sin { (\pi z) } } $$

Let's start then ^^:

\begin{align} \prod_{ n=2 }^{ \infty }{ \left( 1-\frac { 1 }{ n(n-1) } \right) } &= \prod_{ n=2 }^{ \infty }{ \left( \frac { { n }^{ 2 }-n-1 }{ n(n-1) } \right) } \\ &= \prod_{ n=2 }^{ \infty }{ \left( \frac { (n-{ \phi }_{ + }) }{ n } \right) } \prod _{ n=2 }^{ \infty }{ \left( \frac { (n-{ \phi }_{ - }) }{ (n-1) } \right) } \\ &= \prod_{ n=2 }^{ \infty }{ \left( 1-\frac { { \phi }_{ + } }{ n } \right) } \prod _{ k=1 }^{ \infty }{ \left( \frac { k+1-{ \phi }_{ - } }{ k } \right) } \\ &= \frac { \prod _{ k=1 }^{ \infty }{ \left( 1-\frac { { \emptyset }_{ + } }{ k } \right) } }{ 1-{ \phi }_{ + } } \prod _{ k=1 }^{ \infty }{ \left( 1+\frac { 1-{ \phi }_{ - } }{ k } \right) } \end{align}

Now let's calculate each product using our identity: \begin{align} \prod_{ k=1 }^{ \infty }{ \left( 1+\frac { 1-{ \phi }_{ - } }{ k } \right) { e }^{ -\frac { 1-{ \phi }_{ - } }{ k } } } &= \frac { { e }^{ -\gamma (1-{ \phi }_{ - }) } }{ (1-{ \phi }_{ - })\Gamma (1-{ \phi }_{ - }) } \\ \prod_{ k=1 }^{ \infty }{ \left( 1-\frac { { \phi }_{ + } }{ k } \right) } { e }^{ \frac { { \phi }_{ + } }{ k } } &= \frac { { e }^{ \gamma { \phi }_{ + } } }{ -{ \phi }_{ + }\Gamma (-{ \phi }_{ + }) } \end{align}

Now we will multiply both the products(observe that ${ \phi }_{ + }+{ \phi }_{ - } = 1$): \begin{align} \prod_{ k=1 }^{ \infty }{ \left( 1+\frac { 1-{ \phi }_{ - } }{ k } \right) } { e }^{ \frac { { \phi }_{ - }-1 }{ k } }\prod _{ k=1 }^{ \infty }{ \left( 1-\frac { { \phi }_{ + } }{ k } \right) } { e }^{ \frac { { \phi }_{ + } }{ k } } &= \prod _{ k=1 }^{ \infty }{ \left( 1+\frac { 1-{ \phi }_{ - } }{ k } \right) \left( 1-\frac { {\phi }_{ + } }{ k } \right) } \\ &= \frac { 1 }{ -\Gamma (-{ \phi }_{ + })\Gamma (1-{ \phi }_{ - }){ \phi }_{ + }(1-{ \phi }_{ - }) } \end{align}

Observe that:

$$ \Gamma (-{ \phi }_{ + })\Gamma (1-{ \phi }_{ - }) = \Gamma (-{ \phi }_{ + })\Gamma ({ \phi }_{ + }) = \frac { -\pi \csc { (\pi { \phi }_{ + }) } }{ { \phi }_{ + } } $$

so: $$ -\Gamma (-{ \phi }_{ + })\Gamma (1-{ \phi }_{ - }){ { \left( { \phi }_{ + } \right) }^{ 2 } } = \pi \csc { (\pi { \phi }_{ + }){ \phi }_{ + } } $$

We get: \begin{align} \prod_{ n=1 }^{ \infty }{ \left( 1-\frac { 1 }{ n(n-1) } \right) } &= \frac { \prod _{ k=1 }^{ \infty }{ \left( 1-\frac { { \phi }_{ + } }{ k } \right) } \prod _{ k=1 }^{ \infty }{ \left( 1+\frac { 1-{ \phi }_{ - } }{ k } \right) } }{ 1-{ \phi }_{ + } } \\ &= \frac { \sin { (\pi { \phi }_{ + }) } }{ \pi { \phi }_{ + }(1-{ \phi }_{ + }) } \\ &= -\frac { \sin { (\frac { \pi }{ 2 } +\frac { \sqrt { 5 } }{ 2 } \pi ) } }{ \pi } \\ &= -\frac { \cos { \left( \frac { \sqrt { 5 } \pi }{ 2 } \right) } }{ \pi } \end{align}