Let $ U_{1} $ and $ U_{2}$ be vector subspaces of a vector space $ V $.
Prove if $ U_{1} \cup U_{2} = V $, then $ U_{1} = V $ or $ U_{2} = V $ or both.
Attempt:
$ U_{1} \cup U_{2} = V $ $\implies$ $ (U_{1} \cup U_{2} ) \setminus U_{2} = V \setminus U_{2} $. This is equivalent to $ U_{1} = V \setminus U_{2} $. But this is a contradiction as this means that $ 0 \notin U_{1} $. $ \square $