We can also prove the companion identity from above.
Suppose we seek to evaluate
$$Q(x,\rho) = \sum_{k=0}^\rho {2x+1\choose 2k+1}
{x-k\choose \rho-k}$$
where $x\ge\rho.$
Introduce
$${x-k\choose \rho-k} = {x-k\choose x-\rho} =
\frac{1}{2\pi i}
\int_{|z|=\epsilon}
\frac{1}{z^{x-\rho+1}}
(1+z)^{x-k} \; dz.$$
Note that this controls the range being zero when $\rho\lt k \le x$ so
we can extend the sum to $x$ supposing that $x\gt \rho$. And when
$x=\rho$ we may also set the upper limit to $x.$
We get for the sum
$$\frac{1}{2\pi i}
\int_{|z|=\epsilon}
\frac{1}{z^{x-\rho+1}}
(1+z)^{x}
\sum_{k=0}^x {2x+1\choose 2k+1} \frac{1}{(1+z)^k}
\; dz.$$
This is
$$\frac{1}{2} \frac{1}{2\pi i}
\int_{|z|=\epsilon}
\frac{(1+z)^{x}}{z^{x-\rho+1}} \sqrt{1+z}
\left(\left(1+\frac{1}{\sqrt{1+z}}\right)^{2x+1}
- \left(1-\frac{1}{\sqrt{1+z}}\right)^{2x+1}\right) \; dz
\\ =
\frac{1}{2} \frac{1}{2\pi i}
\int_{|z|=\epsilon}
\frac{1}{z^{x-\rho+1}}
\left((1+\sqrt{1+z})^{2x+1}-(1-\sqrt{1+z})^{2x+1}\right)
\; dz.$$
Observe that the second term in the parenthesis (i.e. $1-\sqrt{1+z}$)
has no constant term and hence starts at $z^{2x+1}$ making for a zero
contribution. This leaves
$$\frac{1}{2} \frac{1}{2\pi i}
\int_{|z|=\epsilon}
\frac{1}{z^{x-\rho+1}}
(1+\sqrt{1+z})^{2x+1}
\; dz.$$
Now put $1+z=w^2$ so that $dz = 2w\; dw$ to get
$$\frac{1}{2\pi i}
\int_{|w-1|=\epsilon}
\frac{1}{(w^2-1)^{x-\rho+1}}
(1+w)^{2x+1}
\; w \; dw
\\ = \frac{1}{2\pi i}
\int_{|w-1|=\epsilon}
\frac{1}{(w-1)^{x-\rho+1}}
\frac{1}{(w+1)^{x-\rho+1}}
(1+w)^{2x+1}
\; w \; dw
\\ = \frac{1}{2\pi i}
\int_{|w-1|=\epsilon}
\frac{1}{(w-1)^{x-\rho+1}}
(1+w)^{x+\rho} \; w \; dw.$$
Writing $w=(w-1)+1$ this produces two pieces, the first is
$$\frac{1}{2\pi i}
\int_{|w-1|=\epsilon}
\frac{1}{(w-1)^{x-\rho}}
\sum_{q=0}^{x+\rho}
{x+\rho\choose q} 2^{x+\rho-q} (w-1)^q
\; dw.$$
This is
$$[(w-1)^{x-\rho-1}]
\sum_{q=0}^{x+\rho}
{x+\rho\choose q} 2^{x+\rho-q} (w-1)^q
\\= {x+\rho\choose x-\rho-1} 2^{x+\rho-(x-\rho-1)}
= {x+\rho\choose x-\rho-1} 2^{2\rho+1}
= {x+\rho\choose 2\rho+1} 2^{2\rho+1}.$$
The second piece is
$$[(w-1)^{x-\rho}]
\sum_{q=0}^{x+\rho}
{x+\rho\choose q} 2^{x+\rho-q} (w-1)^q
\\= {x+\rho\choose x-\rho} 2^{x+\rho-(x-\rho)}
= {x+\rho\choose x-\rho} 2^{2\rho}
= {x+\rho\choose 2\rho} 2^{2\rho}.$$
Joining the two pieces we finally obtain
$$\left(2\times \frac{x-\rho}{2\rho+1} + 1\right)
\times {x+\rho\choose 2\rho} 2^{2\rho}
\\ = \frac{2x+1}{2\rho +1}
{x+\rho\choose 2\rho} 2^{2\rho}.$$