3

I'm stuck with this question:

"Consider $\iint _S(\vec \nabla \times \vec F)\cdot d\vec S$, where $\vec F=xyz\vec i+y^2z\vec j+xy^2\vec k$ and $S$ is the surface of the unit disc $0\le x^2+z^2\le 1$ on the plane $y=1$, with the normal to the plane taken in the negative $y$ direction. Calculate the integral. You may use one of the integral theorems if you wish."

So I decided to use Stokes' theorem and this is my working so far:

$\frac {\partial}{\partial x}=yz$

$\frac {\partial}{\partial y}=2yz$

$\frac {\partial}{\partial z}=0$

$\\[10pt]$

$\vec \nabla =yz\vec i+2yz\vec j$

$\\[10pt]$

$\vec \nabla \times \vec F= \left| \begin{array}\ {\vec i}&{\vec j}&{\vec k}\\ yz&2yz&0\\ xyz&y^2z&xy^2 \end{array} \right| $

$\vec \nabla \times \vec F=2xy^3z\vec i -xy^3z\vec j +(y^3z^2-2xy^2z^2)\vec k$

$(\vec \nabla \times \vec F)\cdot \vec n = xy^3z$

$\\[10pt]$

So I've set up my integral as $\iint _Sxy^3z\,dS$ but I'm confused about what to set the integral limits to. The example that I was looking at on page 2 of this pdf sort just doesn't set any limits http://www.math.uiuc.edu/~franklan/Math241_168_StokesThm.pdf

Would it be $\int_0^1\int_0^1xy^3z\,dx\,dz$?

1 Answers1

1

The Curl of $\vec F$ (see that embedded NOTE) is

$$\nabla \times \vec F=\hat x (2yx-y^2)+\hat y(xy-y^2)+\hat z(-xz)$$

Since the surface normal point in the direction of $-\hat y$, and $y=1$ on the surface, we have

$$\left.\left(\nabla \times \vec F\cdot (-\hat y)\right)\right|_{y=1}=1-x$$

Therefore, we have

$$\begin{align} \int_S \nabla \times \vec F \cdot \hat n\,dS&=\int_{-1}^{1}\int_{-\sqrt{1-x^2}}^{\sqrt{1-x^2}} (1-x)\,dx\,dz\\\\ &=\pi \end{align}$$

where we exploited the facts that $\int_{-1}^{1}\int_{-\sqrt{1-x^2}}^{\sqrt{1-x^2}}$ gives the area of a circle of unit radius (i.e., $\pi$) and

$$\int_{-1}^{1}\int_{-\sqrt{1-x^2}}^{\sqrt{1-x^2}}x\,dx\,dz=0$$

since in the inner integral we are integrating an odd function, namely $x$, over symmetric limits.


NOTE:

$\vec \nabla \times \vec F= \left| \begin{array}\ {\vec i}&{\vec j}&{\vec k}\\ \frac{\partial}{\partial x}&\frac{\partial}{\partial y}&\frac{\partial}{\partial z}\\ xyz&y^2z&xy^2 \end{array} \right| $

Therefore,

$$\nabla \times \vec F=\hat x (2yx-y^2)+\hat y(xy-y^2)+\hat z(-xz)$$

Mark Viola
  • 179,405
  • Wow I can't believe I made such a silly mistake with the curl. And thank-you very much for your very detailed answer. I just have one question, wouldn't the j component of the curl be negative? –  Aug 02 '15 at 00:01
  • First, don't worry about the error. Everyone is prone to errors. It would be boring otherwise. Second, you're welcome. It is my true pleasure!! Finally, the $\hat y$ component of the Curl is $$\partial_z (xyz)-\partial_x (xy^2)=xy-y^2$$Then, forming the inner product with $-\hat y$ we obtain $1-x$. – Mark Viola Aug 02 '15 at 00:04
  • Ah I see now! Thank you again –  Aug 02 '15 at 00:05
  • You're most welcome! – Mark Viola Aug 02 '15 at 00:05