I'm stuck with this question:
"Consider $\iint _S(\vec \nabla \times \vec F)\cdot d\vec S$, where $\vec F=xyz\vec i+y^2z\vec j+xy^2\vec k$ and $S$ is the surface of the unit disc $0\le x^2+z^2\le 1$ on the plane $y=1$, with the normal to the plane taken in the negative $y$ direction. Calculate the integral. You may use one of the integral theorems if you wish."
So I decided to use Stokes' theorem and this is my working so far:
$\frac {\partial}{\partial x}=yz$
$\frac {\partial}{\partial y}=2yz$
$\frac {\partial}{\partial z}=0$
$\\[10pt]$
$\vec \nabla =yz\vec i+2yz\vec j$
$\\[10pt]$
$\vec \nabla \times \vec F= \left| \begin{array}\ {\vec i}&{\vec j}&{\vec k}\\ yz&2yz&0\\ xyz&y^2z&xy^2 \end{array} \right| $
$\vec \nabla \times \vec F=2xy^3z\vec i -xy^3z\vec j +(y^3z^2-2xy^2z^2)\vec k$
$(\vec \nabla \times \vec F)\cdot \vec n = xy^3z$
$\\[10pt]$
So I've set up my integral as $\iint _Sxy^3z\,dS$ but I'm confused about what to set the integral limits to. The example that I was looking at on page 2 of this pdf sort just doesn't set any limits http://www.math.uiuc.edu/~franklan/Math241_168_StokesThm.pdf
Would it be $\int_0^1\int_0^1xy^3z\,dx\,dz$?