Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a continuously differentiable real function such that
- $f(0) = 0$
- $f'(x) \le -\frac{1}{2}$ for every $x \in \mathbb{R}$
Then it is always true that $\lim_{x \rightarrow \infty} f^{2}(x) = +\infty$?
I could not find a counterexample neither prove this statement. I only could prove that if a counterexample $g$ exists, then $\lim_{x \rightarrow \infty} g(x)$ is not finite or $\lim_{x \rightarrow \infty} g'(x)$ is not finite. For otherwise, it can be proved that $\lim_{x \rightarrow \infty} g'(x) = 0$, contradicting (2).
Similarly, if a counterexample $g$ exists, then $\lim_{x \rightarrow \infty} g(x)$ is not finite or $g'$ is not uniformly continuous. For otherwise, by Barbalat's lemma, then $\lim_{x \rightarrow \infty} g'(x) = 0$, again contradicting (2).