$$x = 4 \bmod 18$$
$$x = 52 \bmod 96$$
$$x = 6 \bmod 20$$
My current algorithm thinks the answer is $x \equiv 1066 \bmod 1440$ but I don't think there should be a solution to this.
The algorithm:
function solve_congruences(values, moduli):
u = first value in values
M = first modulus in moduli
u = u mod M //just in case
for each v,N pair from values and moduli:
v = v mod N
if u==v:
M = lcm(M,N)
skip the rest of this loop (next pair)
gcdmn = gcd(M,N)
if u mod gcdmn isn't equal to v mod gcdmn :
return NO SOLUTION
g,a,b = egcd(M/gcdmn , -N/gcdmn ) //extended gcd
newmod = lcm(M,N)
u = (u+a*M) mod newmod
M = newmod
return u,M