$\newcommand{\bbx}[1]{\,\bbox[15px,border:1px groove navy]{\displaystyle{#1}}\,}
\newcommand{\braces}[1]{\left\lbrace\,{#1}\,\right\rbrace}
\newcommand{\bracks}[1]{\left\lbrack\,{#1}\,\right\rbrack}
\newcommand{\dd}{\mathrm{d}}
\newcommand{\ds}[1]{\displaystyle{#1}}
\newcommand{\expo}[1]{\,\mathrm{e}^{#1}\,}
\newcommand{\ic}{\mathrm{i}}
\newcommand{\mc}[1]{\mathcal{#1}}
\newcommand{\mrm}[1]{\mathrm{#1}}
\newcommand{\pars}[1]{\left(\,{#1}\,\right)}
\newcommand{\partiald}[3][]{\frac{\partial^{#1} #2}{\partial #3^{#1}}}
\newcommand{\root}[2][]{\,\sqrt[#1]{\,{#2}\,}\,}
\newcommand{\totald}[3][]{\frac{\mathrm{d}^{#1} #2}{\mathrm{d} #3^{#1}}}
\newcommand{\verts}[1]{\left\vert\,{#1}\,\right\vert}$
\begin{align}
\sum_{i = 0}^{n}{i \choose k} & =
\sum_{i = 0}^{n}\bracks{z^{k}}\pars{1 + z}^{\, i} =
\bracks{z^{k}}\sum_{i = 0}^{n}\pars{1 + z}^{\, i} =
\bracks{z^{k}}{\pars{1 + z}^{n + 1} - 1 \over \pars{z + 1} - 1}
\\[5mm] & =
\bracks{z^{k + 1}}\pars{1 + z}^{n + 1} -
\bracks{z^{k + 1}}1 =
\bbx{\large{n + 1 \choose k + 1} - \delta_{k,-1}} \\ &
\end{align}