Prove
$$\lim_{n \to \infty} (\sqrt{9n^2 + 2n + 1} - 3n) = \frac{1}{3}$$
I got this problem in Harro Heuser's "Lehrbuch der Analysis Teil 1". It is surely smaller than 1 because $\sqrt{9n^2 + 2n + 1} < \sqrt{9n^2 + 6n + 1} = 3n + 1$, but I cannot get closer than that, although it looks very simple...
$$\sqrt{9n^2 + 2n + 1} - 3n = \frac{(\sqrt{9n^2 + 2n + 1} - 3n)(\sqrt{9n^2 + 2n + 1} + 3n)}{\sqrt{9n^2 + 2n + 1} + 3n} = \frac{2n + 1}{\sqrt{9n^2 + 2n + 1} + 3n}$$
– Matthew Cassell Jul 22 '15 at 14:33