The $\implies$ part interests me. The proof given goes like this:
Let $A$ be continuous in 0 (because the 0 vector is in every vector space)
$B_y(0,r)=\{y \in Y | \| y\|<r \} \implies \exists B_x(0,s), A(B_s(0,s))\subset B_y(0,r), \sup_{\| x\|\subseteq S}\|Ax \| \leq r.$
Then it says for any
$$x \in X: \|Ax\|= S^{-1}\|x\|\|A(\frac{Sx}{\|x\|})\|\leq S^{-1}r\|x\| > \implies \|Ax \| \leq M \|x \|$$