Andreé' proof works only for field extensions of degree $2$. Mine works for every field extension.
If $\mathbb{K}$ is a field, we denote with $M_n(\mathbb{K})$ the $\mathbb{K}$-algebra of square matrices $n \times n$. If $A \in M_n(\mathbb{K})$ we call minimal polynomial of $A$ over $\mathbb{K}$ the unique monic polynomial $\mu_{A,\mathbb{K}} \in \mathbb{K}[t]$ that is a generator of the ideal $\{ q(t) \in \mathbb{K}[t] \mid q(A) = 0 \}$ of the ring $\mathbb{K}[t]$.
Lemma 1. If $A \in M_n(\mathbb{K})$, then $\deg \mu_{A, \mathbb{K}} = d$ if and only if the following two conditions are satisfied:
- the matrices $\mathrm{Id}, A, A^2, \dots, A^{d-1}$ are linearly independent over $\mathbb{K}$;
- the matrices $\mathrm{Id}, A, A^2, \dots, A^{d-1}, A^d$ are linearly dependent over $\mathbb{K}$.
Lemma 2. Let $\mathbb{F} \supseteq \mathbb{K}$ be a field extension and let $v_1, \dots, v_r \in \mathbb{K}^N \subseteq \mathbb{F}^N$ be vectors. Then they are linearly dependent over $\mathbb{K}$ if and only if they are linearly dependent over $\mathbb{F}$.
Try to prove Lemma 1 and Lemma 2 on your own.
Proposition. Let $\mathbb{F} \supseteq \mathbb{K}$ be a field extension and let $A \in M_n(\mathbb{K})$. Then $\mu_{A,\mathbb{K}} = \mu_{A,\mathbb{F}}$.
Proof. It is clear that $\mu_{A,\mathbb{F}}$ divides $\mu_{A,\mathbb{K}}$. Since they are monic, it suffices to show that they have the same degree. But it follows from the previous lemmas. $\square$