the lim sup you are asking about is infinite
zeraoulia, the article you should read is Alaoglu and Erdos
http://www.renyi.hu/~p_erdos/1944-03.pdf
The numbers that are most efficient at giving large ( and increasing without bound) $\sigma(n)/n$ are called Colossally Abundant Numbers there. See https://mathoverflow.net/questions/79927/which-n-maximize-gn-frac-sigmann-log-log-n
I should also point out that programming the CA numbers is not so easy. However, the approximate factorization of one of these is very similar to a fairly easy sequence,
$$ \operatorname{lcm} \; \{1,2,3,4,5, \ldots, N \} $$
Note that this number increases only when $N$ is a prime or prime power, so make the sequence under consideration from those.
Furthermore, you ask about the ratio $\sigma(n)/n$ by itself. This is, as pointed out, unbounded. As you can see at How would I find a number where $\sum_{d\mid n}d > 100n$? we can make arbitrarily large values from either the factorials or the primorials. I decided to do it with CA numbers, I did get the ratio up to $30$ and gave up. I think someone dedicated could do the task there with the LCM numbers I describe above.
Prime Power : 1 ratio: 1 n : 1 sigma(n) : 1
Prime Power : 2 ratio: 1.5 n : 2 sigma(n) : 3
Prime Power : 3 ratio: 2 n : 6 sigma(n) : 12
Prime Power : 4 ratio: 2.33333 n : 12 sigma(n) : 28
Prime Power : 5 ratio: 2.8 n : 60 sigma(n) : 168
Prime Power : 7 ratio: 3.2 n : 420 sigma(n) : 1344
Prime Power : 8 ratio: 3.42857 n : 840 sigma(n) : 2880
Prime Power : 9 ratio: 3.71429 n : 2520 sigma(n) : 9360
Prime Power : 11 ratio: 4.05195 n : 27720 sigma(n) : 112320
Prime Power : 13 ratio: 4.36364 n : 360360 sigma(n) : 1572480
Prime Power : 16 ratio: 4.50909 n : 720720 sigma(n) : 3249792
Prime Power : 17 ratio: 4.77433 n : 12252240 sigma(n) : 58496256
Prime Power : 19 ratio: 5.02561 n : 232792560 sigma(n) : 1169925120
Prime Power : 23 ratio: 5.24412 n : 5354228880 sigma(n) : 28078202880
Prime Power : 25 ratio: 5.41892 n : 26771144400 sigma(n) : 145070714880
Prime Power : 27 ratio: 5.55787 n : 80313433200 sigma(n) : 446371430400
Prime Power : 29 ratio: 5.74952 n : 2329089562800 sigma(n) : 13391142912000
Prime Power : 31 ratio: 5.93499 n : 72201776446800 sigma(n) : 428516573184000
Prime Power : 32 ratio: 6.03071 n : 144403552893600 sigma(n) : 870856261632000
Prime Power : 37 ratio: 6.1937 n : 5342931457063200 sigma(n) : 33092537942016000
Prime Power : 41 ratio: 6.34477 n : 219060189739591200 sigma(n) : 1389886593564672000
Prime Power : 43 ratio: 6.49232 n : 9419588158802421600 sigma(n) : 61155010116845568000
Prime Power : 47 ratio: 6.63046 n : 442720643463713815200 sigma(n) : 2935440485608587264000
Prime Power : 49 ratio: 6.74886 n : 3099044504245996706400 sigma(n) : 20915013459961184256000
Prime Power : 53 ratio: 6.8762 n : 164249358725037825439200 sigma(n) : 1129410726837903949824000
Prime Power : 59 ratio: 6.99274 n : 9690712164777231700912800 sigma(n) : 67764643610274236989440000
Prime Power : 61 ratio: 7.10738 n : 591133442051411133755680800 sigma(n) : 4201407903837002693345280000
Prime Power : 64 ratio: 7.16378 n : 1182266884102822267511361600 sigma(n) : 8469504822020624477061120000
Prime Power : 67 ratio: 7.27071 n : 79211881234889091923261227200 sigma(n) : 575926327897402464440156160000
Prime Power : 71 ratio: 7.37311 n : 5624043567677125526551547131200 sigma(n) : 41466695608612977439691243520000
Prime Power : 73 ratio: 7.47411 n : 410555180440430163438262940577600 sigma(n) : 3068535475037360330537152020480000
Prime Power : 79 ratio: 7.56872 n : 32433859254793982911622772305630400 sigma(n) : 245482838002988826442972161638400000
Prime Power : 81 ratio: 7.63179 n : 97301577764381948734868316916891200 sigma(n) : 742585584959041199989990788956160000
Prime Power : 83 ratio: 7.72374 n : 8076030954443701744994070304101969600 sigma(n) : 62377189136559460799159226272317440000
Prime Power : 89 ratio: 7.81053 n : 718766754945489455304472257065075294400 sigma(n) : 5613947022290351471924330364508569600000
Prime Power : 97 ratio: 7.89105 n : 69720375229712477164533808935312303556800 sigma(n) : 550166808184454444248584375721839820800000
Prime Power : 101 ratio: 7.96918 n : 7041757898200960193617914702466542659236800 sigma(n) : 56117014434814353313355606323627661721600000
Prime Power : 103 ratio: 8.04655 n : 725301063514698899942645214354053893901390400 sigma(n) : 5836169501220692744588983057657276819046400000
Prime Power : 107 ratio: 8.12175 n : 77607213796072782293863037935883766647448772800 sigma(n) : 630306306131834816415610170226985896457011200000
Prime Power : 109 ratio: 8.19626 n : 8459186303771933270031071135011330564571916235200 sigma(n) : 69333693674501829805717118724968448610271232000000
=-=-=-=-=-=-=-=-=-=
Decided to do it myself this way with the LCM, and see how far I can get. Below is an abbreviated printout. I told it to just print when the ratio became at least as large as the next integer...
Prime Power : 1 prime : 1 floor of ratio: 1 log base ten of n : 0
Prime Power : 3 prime : 3 floor of ratio: 2 log base ten of n : 0.778151
Prime Power : 7 prime : 7 floor of ratio: 3 log base ten of n : 2.62325
Prime Power : 11 prime : 11 floor of ratio: 4 log base ten of n : 4.44279
Prime Power : 19 prime : 19 floor of ratio: 5 log base ten of n : 8.36697
Prime Power : 32 prime : 2 floor of ratio: 6 log base ten of n : 14.1596
Prime Power : 61 prime : 61 floor of ratio: 7 log base ten of n : 26.7717
Prime Power : 103 prime : 103 floor of ratio: 8 log base ten of n : 44.8605
Prime Power : 169 prime : 13 floor of ratio: 9 log base ten of n : 73.6195
Prime Power : 289 prime : 17 floor of ratio: 10 log base ten of n : 127.488
Prime Power : 509 prime : 509 floor of ratio: 11 log base ten of n : 223.273
Prime Power : 881 prime : 881 floor of ratio: 12 log base ten of n : 383.769
Prime Power : 1531 prime : 1531 floor of ratio: 13 log base ten of n : 665.019
Prime Power : 2671 prime : 2671 floor of ratio: 14 log base ten of n : 1153.3
Prime Power : 4639 prime : 4639 floor of ratio: 15 log base ten of n : 2010.98
Prime Power : 8089 prime : 8089 floor of ratio: 16 log base ten of n : 3507.89
Prime Power : 14107 prime : 14107 floor of ratio: 17 log base ten of n : 6130.6
Prime Power : 24649 prime : 157 floor of ratio: 18 log base ten of n : 10714
=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=