You can use this: Let $p_1,..,p_n$ be the first $n$ primes, and let $(a_1,a_2,..,a_n)$ be an $n$-ple in $\mathbb N^n$. Then map $$(a_1,a_2,...,a_n)\rightarrow p_1^{a_1}p_2^{a_2}....p_n^{a_n} $$
Which is an injection from $\mathbb N^n$ into $\mathbb N$ , since no two numbers have the same prime factorization and every number has a unique factorization. or $$(a_1,a_2,..,a_n) \rightarrow 0.a_!a_2...a_n 0000... $$ gives you an injection into the Rationals.
Then formally, you can then use Cantor-Schroeder-Bernstein to conclude $|\mathbb N^n|=|N|$
But notice that $|N^{|N|}| \neq |\mathbb N|$ , e.g., consider a decimal expansion $a.a_0a_1,...a_n... $