Question: $ \sin78^\circ-\sin66^\circ-\sin42^\circ+\sin6° $
I have partially solved this:-
$$ \sin78^\circ-\sin42^\circ +\sin6^\circ-\sin66^\circ $$
$$ 2\cos\left(\frac{78^\circ+42^\circ}{2}\right) \sin\left(\frac{78^\circ-42^\circ}{2}\right) + 2\cos\left(\frac{6^\circ+66^\circ}{2}\right)\sin\left(\frac{6^\circ-66^\circ}{2}\right) $$
$$ 2\cos(60^\circ)\sin(18^\circ) + 2\cos(36^\circ)\sin(-30^\circ) $$
$$ 2\frac{1}{2}\sin(18^\circ) - 2\cos(36^\circ)\cdot\frac{1}{2} $$
$$ \sin(18^\circ) - \cos(36^\circ) $$
At this point I had to use a calculator. Does anyone know a way to solve it without a calculator.Thanks in advance.