The ring of integers of a number field $K$ is the set of elements of $K$ that are integral over $\mathbb{Z}$, i.e. they are roots of monic irreducible polynomials with coefficients in $\mathbb{Z}$. As the name implies, they form a subring of $K$. The ring of integers of $K$ is usually denoted $\mathcal{O}_K$.
An integral basis for a number field $K$ is a basis for $\mathcal{O}_K$ as a $\mathbb{Z}$-module (it is a theorem that $\mathcal{O}_K$ is a free $\mathbb{Z}$-module of rank $n$, where $n=[K:\mathbb{Q}]$).
Proposition 13.1.1 in Ireland & Rosen tells you that, for $K=\mathbb{Q}(\sqrt{d})$ with $d$ a squarefree integer,
$$\mathcal{O}_K=\begin{cases}\mathbb{Z}[\sqrt{d}] & \text{ if }d\equiv 2,3\bmod 4,\\\\\mathbb{Z}\left[\tfrac{-1+\sqrt{d}}{2}\right] & \text{ if }d\equiv 1\bmod 4.\end{cases}$$
So, given two $\alpha,\beta\in\mathcal{O}_K$, the set $\{\alpha,\beta\}$ is an integral basis for $K$ if every $\gamma\in \mathcal{O}_K$ can be uniquely represented as $\gamma=r\alpha+s\beta$ for some $r,s\in\mathbb{Z}$. Clearly, if $\{\alpha,\alpha'\}$ is to be an integral basis, $\alpha$ cannot be in $\mathbb{Z}$, so we must have that
$$\alpha=\begin{cases}h+k\sqrt{d} \text{ for some }h,k\in\mathbb{Z}, k\neq 0 & \text{ if }d\equiv 2,3\bmod 4,\\\\h+k\left(\tfrac{-1+\sqrt{d}}{2}\right) \text{ for some }h,k\in\mathbb{Z}, k\neq 0 & \text{ if }d\equiv 1\bmod 4.\end{cases}$$
Suppose $d\equiv 2,3\bmod 4$, and that $\alpha=h+k\sqrt{d}$. Then $\alpha'=h-k\sqrt{d}$. Can you write every element of $\mathcal{O}_K$ as a $\mathbb{Z}$-linear combination of $\alpha$ and $\alpha'$?
Now try the case of $d\equiv 1\bmod 4$ for yourself :)