As suggested in the comments, Cox, Little, and O'Shea have written about how to solve the implicitization problem, but in their first book Ideals, Varieties, and Algorithms. See my answer here for a reference to the result used below. (I think we could alternatively use multivariable resultants rather than Gröbner bases.)
Let $u = s^{-1}$ and $v = t^{-1}$. We form the ideal
\begin{align*}
I = (su - 1, tv - 1, x &- (t + v + t^2 s + v^2 u + t u + v s - 6),\\
y &- (t + v^2 + t s + u - 4), z - (v + t^2 + v u + s - 4))
\end{align*}
in $\mathbb{Q}[s,t,u,v,x,y,z])$, and compute a Gröbner basis $G$ with respect to the lexicographical order. The last entry of $G$ is a Gröbner basis for the elimination ideal $I \cap \mathbb{Q}[x,y,z]$, and is the polynomial $P(x,y,z)$ you're looking for. Computing using SageMath, we find
\begin{align*}
P(x,y,z) = x^{5} + 2 x^{4} y + 2 x^{4} z + 50 x^{4} - x^{3} y^{2} z - 7 x^{3} y^{2} - x^{3} y z^{2} - 17 x^{3} y z - 25 x^{3} y - 7 x^{3} z^{2} - 25 x^{3} z + 625 x^{3} + x^{2} y^{4} - 2 x^{2} y^{3} z + x^{2} y^{3} - 49 x^{2} y^{2} z - 245 x^{2} y^{2} - 2 x^{2} y z^{3} - 49 x^{2} y z^{2} - 610 x^{2} y z - 1875 x^{2} y + x^{2} z^{4} + x^{2} z^{3} - 245 x^{2} z^{2} - 1875 x^{2} z + 2 x y^{5} - x y^{4} z + 48 x y^{4} + x y^{3} z^{3} + 19 x y^{3} z^{2} + 66 x y^{3} z + 455 x y^{3} + 19 x y^{2} z^{3} + 336 x y^{2} z^{2} + 1245 x y^{2} z + 1875 x y^{2} - x y z^{4} + 66 x y z^{3} + 1245 x y z^{2} + 3750 x y z + 2 x z^{5} + 48 x z^{4} + 455 x z^{3} + 1875 x z^{2} + y^{6} - y^{5} z^{2} - 10 y^{5} z + 14 y^{5} - 23 y^{4} z^{2} - 237 y^{4} z - 19 y^{4} + 8 y^{3} z^{3} - 73 y^{3} z^{2} - 1564 y^{3} z - 625 y^{3} - y^{2} z^{5} - 23 y^{2} z^{4} - 73 y^{2} z^{3} + 366 y^{2} z^{2} - 1875 y^{2} z - 10 y z^{5} - 237 y z^{4} - 1564 y z^{3} - 1875 y z^{2} + z^{6} + 14 z^{5} - 19 z^{4} - 625 z^{3} \, .
\end{align*}