Given the Fibonacci, tribonacci, and tetranacci numbers,
$$F_n = 0,1,1,2,3,5,8\dots$$
$$T_n = 0, 1, 1, 2, 4, 7, 13, 24,\dots$$
$$U_n = 0, 1, 1, 2, 4, 8, 15, 29, \dots$$
and so on, how do we show that,
$$\sum_{n=0}^{\infty}\frac{F_n}{10^n} = \frac{10}{89}$$
$$\sum_{n=0}^{\infty}\frac{T_n}{10^n} = \frac{100}{889}$$
$$\sum_{n=0}^{\infty}\frac{U_n}{10^n} = \frac{1000}{8889}$$
or, in general,
$$\sum_{n=0}^{\infty}\frac{S_n}{p^n} = \frac{(1-p)p^{k-1}}{(2-p)p^k-1}$$
where the above were just the cases $k=2,3,4$, and $p=10$?
P.S. Related post.