Consider the following:

Here, points $D$ and $D^\prime$ are on the (extended) side $\overline{BC}$ of $\triangle ABC$, such that $\angle DAD^\prime$ is a right angle. (If one of $D$ and $D^\prime$ is the foot of the altitude from $A$, then we may take the other to be the "point at infinity" on $\overleftrightarrow{BC}$, so that the line joining it to $A$ is parallel to $\overleftrightarrow{BC}$.) We'll take each of the marked angles $\beta$ and $\gamma$ to be non-obtuse; the reader is invited to adjust this argument for the obtuse case.
Dropping perpendiculars from $B$ and $C$ to respective points $E$ and $F$ on $\overleftrightarrow{AD}$, and to respective points $E^\prime$ and $F^\prime$ on $\overleftrightarrow{AD^\prime}$, we have (for finite $D$)
$$\triangle BED \sim \triangle CFD \qquad\implies\qquad
\frac{|\overline{BD}|}{|\overline{CD}|} = \frac{|\overline{BE}|}{|\overline{CF}|} = \frac{c \sin\beta}{b \sin\gamma} \tag{$\star$}$$
and (for finite $D^\prime$)
$$\triangle BE^\prime D^\prime \sim \triangle CF^\prime D^\prime \qquad\implies\qquad
\frac{|\overline{BD^\prime}|}{|\overline{CD^\prime}|} = \frac{|\overline{BE^\prime}|}{|\overline{CF^\prime}|} = \frac{c \cos\beta}{b \cos\gamma} \tag{$\star\star$}$$
(These results effectively constitute internal and external versions of what the Wikipedia article terms the "generalized angle bisector theorem", generalizing "angle bisector" to a line that may-or-may-not actually bisect the angle. Be that as it may ...)
If one of $\overleftrightarrow{AD}$ and $\overleftrightarrow{AD^\prime}$ is an (interior or exterior) angle bisector, then the other is necessarily an (exterior or interior) angle bisector. In such a case, $\beta = \gamma$, and the trigonometric factors cancel in $(\star)$ and $(\star\star)$, leaving the Internal/External Angle Bisector Theorem
$$\frac{|\overline{BD}|}{|\overline{CD}|} = \frac{c}{b} = \frac{|\overline{BD^\prime}|}{|\overline{CD^\prime}|}$$