4

A : If: $$\sqrt{xy}=\sqrt{x}\sqrt{y}$$ only when $x,y>0$,

B : Then why can I do this:

$$\sqrt{-4}=\sqrt{4\times-1}=\sqrt{4}\sqrt{-1}=2i$$

which violates A since $y<0$

C : But why can I not do this?

$$\sqrt{4}=\sqrt{-1\times-1\times4}=\sqrt{-1}\sqrt{-1}\sqrt{4}=i\cdot i\cdot2=-2$$

Which follows the same reasoning as B.

rubik
  • 9,344

1 Answers1

2

We have $\sqrt{xy}=\sqrt{x}\sqrt{y}$ if and only if $-\pi < \arg x + \arg y \le \pi$, where $\sqrt x$ denotes the principal square root and $\arg x$ denotes the principal argument. See this answer for details.

If $x$ and $y$ are positive numbers, then $\arg x + \arg y = 0 + 0 = 0$, so the identity holds.

In your case B, $\arg(4) + \arg(-1) = 0 + \pi = \pi$, so the identity still holds.

In your case C, $\arg(-1) + \arg(-1) = \pi + \pi = 2\pi$, so the identity fails.

Chris Culter
  • 26,806