A : If: $$\sqrt{xy}=\sqrt{x}\sqrt{y}$$ only when $x,y>0$,
B : Then why can I do this:
$$\sqrt{-4}=\sqrt{4\times-1}=\sqrt{4}\sqrt{-1}=2i$$
which violates A since $y<0$
C : But why can I not do this?
$$\sqrt{4}=\sqrt{-1\times-1\times4}=\sqrt{-1}\sqrt{-1}\sqrt{4}=i\cdot i\cdot2=-2$$
Which follows the same reasoning as B.