It is an exercise from Hatcher (exercise 31, page 392):
For a fiber bundle $F \to E \xrightarrow{p} B$ such that the inclusion $F \hookrightarrow E$ is homotopic to a constant map, show that the long exact sequence of homotopy groups breaks up into split short exact sequences giving isomorphisms $\pi_n(B) \approx \pi_n(E) \oplus \pi_{n-1}(F)$.
Breaking up the long sequence is easy, it is a direct application of the hypothesis: since $i:F \to E$ is null-homotopic, $i_*$ is the null homomorphism and we have the following short exact sequences: $$0 \to \pi_n(E) \to \pi_n(B) \to \pi_{n-1}(F) \to 0 $$
But I couldn't split this short exact sequences. I know that it is suficient to construct a homomorphism $\gamma: \pi_n(B) \to \pi_n(E)$ such that $\gamma \circ p_*=Id_{\pi_n(E)}$. And this condition tells me how $\gamma$ should be on the range of $p_*$, but I don't know how to define it outside $p_*(\pi_n(E))$.
Edit: Reading Grumpy Parsnip's answer, two other questions came up:
This is probably a dumb one. On the definition of $\partial$ on Grumpy's answer, he lifted a map $f:D^n \to B$ to $\bar{f}:D^n \to E$, but I'm not sure how this can be done. As far as I know the fiber bundle $p: E \to B$ has the homotopy lifting property with respect to disks $D^n$: given a homotopy $g_t:D^n \to B$ and a lift $\tilde{g}_0: D^n \to E$ of $g_0$, there is a homotopy $\tilde{g}_t: D^n \to E$ lifting $g_t$. This is exactly what we need to show that all these maps are well-defined, since they all use some sort of lifting. But I don't see how to use this property to define them.
If such lifting always exist, wouldn't $\gamma: \pi_n(B) \to \pi_n(E)$ defined by $\gamma([f])=[\tilde{f}]$ (where $\tilde{f}$ is a lifting of $f$) be a splitting for the left side of the exact sequence?