Here's Theorem 4.3-2 (i.e. the Hahn Banach theorem for normed spaces):
Let $f$ be a bounded linear functional defined on a subspace $Z$ of a normed space $X$. Then there exists a bounbed linear functional $\tilde{f}$ on $X$ such that $$\tilde{f}(x) = f(x) \ \mbox{ for all } \ x\in Z,$$ and $$\Vert \tilde{f} \Vert_X = \Vert f \Vert_Z, $$ where $$\lVert f \rVert_Z := \sup \left\{ \frac{ \lvert f(x) \rvert }{\lVert x \rVert} \colon x \in Z, x \neq 0 \right\} \ \mbox{ if } Z \neq \{ 0 \}; \\ \mbox{ otherwise } \lVert f \rVert_Z := 0.$$ And, $$\Vert \tilde{f} \Vert_X \colon= \sup \left\{ \ \frac{ \vert \tilde{f}(x) \vert }{\Vert x \Vert} \ \colon \ x \in X, \ x \neq 0 \ \right\}.$$
I think I'm clear about the proof of this beautiful result. It uses the Hahn Banach Theorem for Complex Vector Spaces, which uses the Hahn Banach Theorem for Real Vector spaces, and the latter uses the Zorn's lemma.
Now if $X$ is a separable normed space, then is there a proof of the above result that doesn't involve the use of the Zorn's lemma?