Problem: Let $$ A = \begin{pmatrix} 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 \end{pmatrix}. $$ Compute all the eigenvalues and eigenvectors of $A$.
Attempt at solution: I found the eigenvalues by computing the characteristic polynomial. This gives me $$ \det(A - x \mathbb{I}_4) = \det \begin{pmatrix} 1-x & 1 & 1 & 1 \\ 1 & 1-x & 1 & 1 \\ 1 & 1 & 1-x & 1 \\ 1 & 1 & 1 & 1-x \end{pmatrix} = -x^3 (x-4) = 0 $$ after many steps. So the eigenvalues are $\lambda_1 = 0$ with multiplicity $3$ and $ \lambda_2 = 4$ with multiplicity $1$.
Now I was trying to figure out what the eigenvectors are corresponding to these eigenvalues. Per definition we have $Av = \lambda v$, where $v$ is an eigenvector with the corresponding eigenvalue. So I did for $\lambda_2 = 4$: $$ \begin{pmatrix} 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix} = 4 \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix}. $$ I think this is only possible when $x_1 = x_2 = x_3 = x_4 = 1$. So am I right in stating that all the eigenvectors corresponding to $\lambda_2$ are of the form $t \begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \end{pmatrix}$ with $t$ some number $\neq 0$? For $\lambda_1 = 0$, I’m not sure how to find the eigenvectors. The zero vector is never an eigenvector. This means $x_1$, $x_2$, $x_3$ and $x_4$ can be anything as long as they add to zero?