Claim: For all $n\geq 1$, the statement
$$
P(n) : \sum_{i=1}^{2n}\frac{(-1)^{i-1}}{i}=\sum_{i=1}^n\frac{1}{n+i}
$$
is true.
Note: The key to giving an inductive proof here lies in understanding how to reindex a sum; that is, the main obstacle you face in using the inductive hypothesis is realizing how to coax $\sum_{i=1}^k\frac{1}{k+i}$ out of $\sum_{i=1}^{k+1}\frac{1}{(k+1)+i}$. To that end, first observe the following:
$$
\sum_{i=1}^{k+1}\frac{1}{(k+1)+i}=\sum_{i=2}^{k+2}\frac{1}{k+i}=\sum_{i=1}^k\frac{1}{k+i}-\frac{1}{k+1}+\frac{1}{k+(k+2)}+\frac{1}{k+(k+1)}.\tag{$\dagger$}
$$
Now observe that $(\dagger)$ may be rewritten as
$$
\sum_{i=1}^k\frac{1}{k+i}=\sum_{i=1}^{k+1}\frac{1}{(k+1)+i}+\frac{1}{k+1}-\frac{1}{2k+2}-\frac{1}{2k+1}.\tag{$\dagger\!\dagger$}
$$
With all of that in mind, we can prove the original claim.
Proof. For the base step, we must confirm that $P(1)$ is true, something you have already done. Thus, the base case checks out.
Inductive step $P(k)\to P(k+1)$: Fix some $k\geq 1$. Assume that
$$
P(k) : \color{green}{\sum_{i=1}^{2k}\frac{(-1)^{i-1}}{i}=\sum_{i=1}^{k}\frac{1}{k+i}}
$$
holds. To be proved is that
$$
P(k+1) : \color{blue}{\underbrace{\sum_{i=1}^{2(k+1)}\frac{(-1)^{i-1}}{i}}_{\text{LHS}}=\underbrace{\sum_{i=1}^{k+1}\frac{1}{(k+1)+i}}_{\text{RHS}}}
$$
follows. Beginning with the left side of $P(k+1)$,
\begin{align}
\text{LHS} &= \color{blue}{\sum_{i=1}^{2(k+1)}\frac{(-1)^{i-1}}{i}}\tag{definition}\\[1em]
&= \color{green}{\sum_{i=1}^{2k}\frac{(-1)^{i-1}}{i}}-\frac{1}{2k+2}+\frac{1}{2k+1}\tag{by defn. of $\Sigma$}\\[1em]
&= \color{green}{\sum_{i=1}^k\frac{1}{k+i}}-\frac{1}{2k+2}+\frac{1}{2k+1}\tag{by $P(k)$}\\[1em]
&= \left(\color{blue}{\sum_{i=1}^{k+1}\frac{1}{(k+1)+i}}+\frac{1}{k+1}-\frac{1}{2k+2}-\frac{1}{2k+1}\right)-\frac{1}{2k+2}+\frac{1}{2k+1}\tag{$\dagger\!\dagger$}\\[1em]
&= \color{blue}{\sum_{i=1}^{k+1}\frac{1}{(k+1)+i}}+\frac{1}{k+1}-\frac{2}{2k+2}\tag{simplify}\\[1em]
&= \color{blue}{\sum_{i=1}^{k+1}\frac{1}{(k+1)+i}}\tag{$k\neq -1,-1/2$}\\[1em]
&= \text{RHS}\tag{definition}
\end{align}
one arrives at the right side of $P(k+1)$, thereby showing $P(k+1)$ is also true, completing the inductive step.
Conclusion. By mathematical induction, it is proved that for $n\geq 1$ the statement $P(1)$ is true. $\blacksquare$