2

For what values of p does $\sum^\infty_{k=1} \frac {\ln(k)}{k^p}$ converge?

Here is my work:

$\ln (k) < k$ on $[1,\infty)$ so $\frac {\ln (k)}{k^p} < \frac {k}{k^p}$

Therefore, $ \sum^\infty_{k=1} \frac {k}{k^p} = \sum^\infty_{k=1} \frac {1}{k^{p-1}} $

This converges for $p>2$ so the original sum must converge for $p>2$ as well. Now, how do I find when this infinite sum diverges?

Marco Cantarini
  • 33,062
  • 2
  • 47
  • 93
TanMath
  • 558

2 Answers2

2

We have divergence if $p\le 1$, by comparison with $\sum_1^\infty \frac{1}{k}$.

We have convergence if $p\gt 1$. One way to do it is to let $p=1+d$, and do a limit comparison with $\sum_1^\infty \frac{1}{k^{1+d/2}}$. The key fact is that $\lim_{k\to\infty} \frac{\ln k}{k^{d/2}}=0$.

Added: We do some of the details of showing that the series converges if $p\gt 1$. Call our series $\sum_1^\infty a_k$. Let $p=1+d$. Let $b_k=\frac{1}{k^{1+d/2}}$.

The series $\sum_{k=1}^\infty b_k$ converges. We show that $\sum_{k=1}^\infty a_k$ converges by Limit Comparison with $\sum_{k=1}^\infty b_k$. We have $$\frac{a_k}{b_k}=\frac{\ln k}{k^{1+d}}\cdot k^{1+d/2}=\frac{\ln k}{k^{d/2}}.$$ But by L'Hospital's Rule, or otherwise, $\lim_{x\to\infty}\frac{\ln x}{x^{d/2}}=0$, so by Limit Comparison $\sum_{k=1}^\infty a_k$ converges.

More informally, the $\frac{1}{k^{d/2}}$ part of $\frac{1}{k^{1+d}}$ was used to "kill" the $\ln k$ (in the long run). What remains, namely $\frac{1}{k^{1+d/2}}$, decays fast enough to ensure convergence.

If you prefer, you can prove the convergence when $p\gt 1$ by using the Cauchy Condensation Test.

André Nicolas
  • 507,029
1

By L'Hospital's Rule, for any $\epsilon>0$ $$ \lim_{x\to\infty}\frac{\ln{x}}{x^{\epsilon}}=\lim_{x\to\infty}\frac{1}{\epsilon x^{\epsilon}}=0 $$ So $\ln{x}=o(x^{\epsilon})$.

For any $p>1$, let $\epsilon=\dfrac{p-1}{2}$. So $$ \epsilon>0\hspace{ 5mm} \text{and} \hspace{ 5mm} p-\epsilon=\dfrac{p+1}{2}>1 $$ So $$ \sum_{n=1}^{\infty}\frac{\ln{n}}{n^p}=\sum_{n=1}^{\infty}\frac{\ln{n}}{n^{\epsilon}n^{p-\epsilon}}<\sum_{n=1}^{\infty}\frac{1}{n^{p-\epsilon}}<\infty $$ For $p\leqslant 1$ $$ \sum_{n=1}^{\infty}\frac{\ln{n}}{n^p}>\sum_{n=1}^{\infty}\frac{1}{n}=\infty $$

Eugene Zhang
  • 16,805