7

We know that $$\Gamma\left(\frac{1}{2}\right)=\int_{0}^{\infty}\frac{e^{-x}}{\sqrt{x}}dx=\sqrt{\pi} $$ but it seems that, for every $a>0 $ we have $$\int_{0}^{\infty}\frac{e^{-\left(\sqrt{x}-a/\sqrt{x}\right)^{2}}}{\sqrt{x}}dx=\sqrt{\pi}$$ so the additional term $a/\sqrt{x} $ doesn't change the value of the integral. How we can prove (or disprove) it? Thank you.

Olivier Oloa
  • 120,989
User
  • 307

1 Answers1

7

Hint. Make the change of variable $u=\sqrt{x}$, $du=\dfrac{dx}{2\sqrt{x}} $, to obtain $$ \int_0^{+\infty}\frac{e^{-\left(\sqrt{x}-a/\sqrt{x}\right)^{2}}}{\sqrt{x}}dx=2\int_0^{+\infty}e^{-\left(u-a/u\right)^{2}}du=\int_{-\infty}^{+\infty}e^{-\left(u-a/u\right)^{2}}du \tag1 $$ One may then recall that, for any integrable function $f$, we have (see here for a proof):

$$ \int_{-\infty}^{+\infty}f\left(u-\frac{a}{u}\right)\mathrm{d}u=\int_{-\infty}^{+\infty} f(u)\: \mathrm{d}u, \quad a>0. \tag2 $$

Apply it to $f(u)=e^{-u^2}$, you get

$$ \int_{-\infty}^{+\infty}e^{-(u-a/u)^2}\mathrm{d}u=\int_{-\infty}^{+\infty} e^{-u^2} \mathrm{d}u=\color{blue}{\sqrt{\pi}}, \quad a>0, \tag3 $$ giving the desired result.

Olivier Oloa
  • 120,989