All of the answers and comments helped me, but here is my own answer which brings a complete solution in one place.
First of all, we need to recall the following theorem.
Theorem 3.4.iii (XXIX.iii), Algebra (Hungerford)
Let $G$ be a group and $a\in G$. If $a$ has finite order $m>0$, then
$m$ is the least positive integer that $a^m=e$.
Now $|a|=|a^{-1}|$, because
$|a|=n\Rightarrow a^n=e\Rightarrow (a^n)^{-1}=e^{-1}\Rightarrow (a^{-1})^n = e\Rightarrow |a^{-1}|=n\Rightarrow |a|=|a^{-1}|.$
And I also think I can say this statement is true because $\langle a\rangle = \langle a^{-1} \rangle$.
$|ab|=|ba|$ because
$(ab)^n=e\Rightarrow (ab)(ab)^n(ab)=(ab)(ab)=a(ba)b\Rightarrow (ab)^n(ab)^{n^2}(ab)^n=a^n(ba)^nb^n\Rightarrow e=a^n(ba)^nb^n\Rightarrow (ab)^{-n}=(ba)^n\Rightarrow ((ab)^n)^{-1}=(ba)^n\Rightarrow e=(ba)^n$
Hence, $|ab|=|ba|$.
And finally, $|a|=|cac^{-1}|$, because from the statement we proved right above, we know that $|xy|=|yx|, \forall x,y\in G$. Let $x=c$ and $y=ac^{-1}$, so we've got $|yx|=|ac^{-1}c|=|a|$ and $|xy|=|cac^{-1}|$, yielding $|a|=|cac^{-1}|$.
hacked :)